![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axi12 | Unicode version |
Description: Axiom of Quantifier Introduction (intuitionistic logic axiom ax-i12). In classical logic, this is mostly a restatement of axc9 2046 (with one additional quantifier). But in intuitionistic logic, changing the negations and implications to disjunctions makes it stronger. (Contributed by Jim Kingdon, 31-Dec-2017.) |
Ref | Expression |
---|---|
axi12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae 2056 | . . . . 5 | |
2 | nfae 2056 | . . . . 5 | |
3 | 1, 2 | nfor 1935 | . . . 4 |
4 | 3 | 19.32 1967 | . . 3 |
5 | axc9 2046 | . . . . . 6 | |
6 | 5 | orrd 378 | . . . . 5 |
7 | 6 | orri 376 | . . . 4 |
8 | orass 524 | . . . 4 | |
9 | 7, 8 | mpbir 209 | . . 3 |
10 | 4, 9 | mpgbi 1621 | . 2 |
11 | orass 524 | . 2 | |
12 | 10, 11 | mpbi 208 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 A. wal 1393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |