MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axi9 Unicode version

Theorem axi9 2431
Description: Axiom of existence (intuitionistic logic axiom ax-i9). In classical logic, this is equivalent to ax-6 1747 but in intuitionistic logic it needs to be stated using the existential quantifier. (Contributed by Jim Kingdon, 31-Dec-2017.) (New usage is discouraged.)
Ref Expression

Proof of Theorem axi9
StepHypRef Expression
1 ax6e 2002 1
Colors of variables: wff setvar class
Syntax hints:  E.wex 1612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613
  Copyright terms: Public domain W3C validator