![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axinfndlem1 | Unicode version |
Description: Lemma for the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002.) |
Ref | Expression |
---|---|
axinfndlem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfinf 8077 | . . . . 5 | |
2 | nfnae 2058 | . . . . . . 7 | |
3 | nfnae 2058 | . . . . . . 7 | |
4 | 2, 3 | nfan 1928 | . . . . . 6 |
5 | nfcvf 2644 | . . . . . . . . 9 | |
6 | 5 | adantr 465 | . . . . . . . 8 |
7 | nfcvd 2620 | . . . . . . . 8 | |
8 | 6, 7 | nfeld 2627 | . . . . . . 7 |
9 | nfnae 2058 | . . . . . . . . 9 | |
10 | nfnae 2058 | . . . . . . . . 9 | |
11 | 9, 10 | nfan 1928 | . . . . . . . 8 |
12 | nfnae 2058 | . . . . . . . . . . 11 | |
13 | nfnae 2058 | . . . . . . . . . . 11 | |
14 | 12, 13 | nfan 1928 | . . . . . . . . . 10 |
15 | nfcvf 2644 | . . . . . . . . . . . . 13 | |
16 | 15 | adantl 466 | . . . . . . . . . . . 12 |
17 | 6, 16 | nfeld 2627 | . . . . . . . . . . 11 |
18 | 16, 7 | nfeld 2627 | . . . . . . . . . . 11 |
19 | 17, 18 | nfand 1925 | . . . . . . . . . 10 |
20 | 14, 19 | nfexd 1952 | . . . . . . . . 9 |
21 | 8, 20 | nfimd 1917 | . . . . . . . 8 |
22 | 11, 21 | nfald 1951 | . . . . . . 7 |
23 | 8, 22 | nfand 1925 | . . . . . 6 |
24 | simpr 461 | . . . . . . . . 9 | |
25 | 24 | eleq2d 2527 | . . . . . . . 8 |
26 | nfcvd 2620 | . . . . . . . . . . 11 | |
27 | nfcvf2 2645 | . . . . . . . . . . . 12 | |
28 | 27 | adantr 465 | . . . . . . . . . . 11 |
29 | 26, 28 | nfeqd 2626 | . . . . . . . . . 10 |
30 | 11, 29 | nfan1 1927 | . . . . . . . . 9 |
31 | nfcvd 2620 | . . . . . . . . . . . . 13 | |
32 | nfcvf2 2645 | . . . . . . . . . . . . . 14 | |
33 | 32 | adantl 466 | . . . . . . . . . . . . 13 |
34 | 31, 33 | nfeqd 2626 | . . . . . . . . . . . 12 |
35 | 14, 34 | nfan1 1927 | . . . . . . . . . . 11 |
36 | elequ2 1823 | . . . . . . . . . . . . 13 | |
37 | 36 | anbi2d 703 | . . . . . . . . . . . 12 |
38 | 37 | adantl 466 | . . . . . . . . . . 11 |
39 | 35, 38 | exbid 1886 | . . . . . . . . . 10 |
40 | 25, 39 | imbi12d 320 | . . . . . . . . 9 |
41 | 30, 40 | albid 1885 | . . . . . . . 8 |
42 | 25, 41 | anbi12d 710 | . . . . . . 7 |
43 | 42 | ex 434 | . . . . . 6 |
44 | 4, 23, 43 | cbvexd 2026 | . . . . 5 |
45 | 1, 44 | mpbii 211 | . . . 4 |
46 | 45 | a1d 25 | . . 3 |
47 | 46 | ex 434 | . 2 |
48 | nd1 8983 | . . 3 | |
49 | 48 | pm2.21d 106 | . 2 |
50 | nd2 8984 | . . 3 | |
51 | 50 | pm2.21d 106 | . 2 |
52 | 47, 49, 51 | pm2.61ii 165 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
E. wex 1612 F/_ wnfc 2605 |
This theorem is referenced by: axinfnd 9005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-reg 8039 ax-inf 8076 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-un 3480 df-nul 3785 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |