![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axlttri | Unicode version |
Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-lttri 9587 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
axlttri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pre-lttri 9587 | . 2 | |
2 | ltxrlt 9676 | . 2 | |
3 | ltxrlt 9676 | . . . . 5 | |
4 | 3 | ancoms 453 | . . . 4 |
5 | 4 | orbi2d 701 | . . 3 |
6 | 5 | notbid 294 | . 2 |
7 | 1, 2, 6 | 3bitr4d 285 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 class class class wbr 4452
cr 9512 cltrr 9517 clt 9649 |
This theorem is referenced by: ltso 9686 leloe 9692 ltnsym 9704 ltadd2 9709 lttrid 9744 ltord1 10104 recgt0 10411 recgt0ii 10476 arch 10817 xrlttri 11374 subgmulg 16215 cosord 22919 logdivlt 23006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-pre-lttri 9587 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-ltxr 9654 |
Copyright terms: Public domain | W3C validator |