![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axpowndlem3OLD | Unicode version |
Description: Obsolete proof of axpowndlem3 8996 as of 9-Jun-2019. (Contributed by NM, 4-Jan-2002.) (Revised by Mario Carneiro, 10-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpowndlem3OLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axpowndlem2OLD 8995 | . 2 | |
2 | axpowndlem1 8993 | . 2 | |
3 | p0ex 4639 | . . . . . . . . 9 | |
4 | eleq2 2530 | . . . . . . . . . . 11 | |
5 | 4 | imbi2d 316 | . . . . . . . . . 10 |
6 | 5 | albidv 1713 | . . . . . . . . 9 |
7 | 3, 6 | spcev 3201 | . . . . . . . 8 |
8 | 0ex 4582 | . . . . . . . . . 10 | |
9 | 8 | snid 4057 | . . . . . . . . 9 |
10 | eleq1 2529 | . . . . . . . . 9 | |
11 | 9, 10 | mpbiri 233 | . . . . . . . 8 |
12 | 7, 11 | mpg 1620 | . . . . . . 7 |
13 | neq0 3795 | . . . . . . . . . . 11 | |
14 | 13 | con1bii 331 | . . . . . . . . . 10 |
15 | 14 | imbi1i 325 | . . . . . . . . 9 |
16 | 15 | albii 1640 | . . . . . . . 8 |
17 | 16 | exbii 1667 | . . . . . . 7 |
18 | 12, 17 | mpbir 209 | . . . . . 6 |
19 | nfnae 2058 | . . . . . . 7 | |
20 | nfnae 2058 | . . . . . . . 8 | |
21 | nfcvf2 2645 | . . . . . . . . . . . 12 | |
22 | nfcvd 2620 | . . . . . . . . . . . 12 | |
23 | 21, 22 | nfeld 2627 | . . . . . . . . . . 11 |
24 | 19, 23 | nfexd 1952 | . . . . . . . . . 10 |
25 | 24 | nfnd 1902 | . . . . . . . . 9 |
26 | 22, 21 | nfeld 2627 | . . . . . . . . 9 |
27 | 25, 26 | nfimd 1917 | . . . . . . . 8 |
28 | dveeq2 2042 | . . . . . . . . . . . . 13 | |
29 | 28 | imdistani 690 | . . . . . . . . . . . 12 |
30 | nfa1 1897 | . . . . . . . . . . . . . 14 | |
31 | elequ2 1823 | . . . . . . . . . . . . . . 15 | |
32 | 31 | sps 1865 | . . . . . . . . . . . . . 14 |
33 | 30, 32 | exbid 1886 | . . . . . . . . . . . . 13 |
34 | 33 | adantl 466 | . . . . . . . . . . . 12 |
35 | 29, 34 | syl 16 | . . . . . . . . . . 11 |
36 | 35 | notbid 294 | . . . . . . . . . 10 |
37 | elequ1 1821 | . . . . . . . . . . 11 | |
38 | 37 | adantl 466 | . . . . . . . . . 10 |
39 | 36, 38 | imbi12d 320 | . . . . . . . . 9 |
40 | 39 | ex 434 | . . . . . . . 8 |
41 | 20, 27, 40 | cbvald 2025 | . . . . . . 7 |
42 | 19, 41 | exbid 1886 | . . . . . 6 |
43 | 18, 42 | mpbii 211 | . . . . 5 |
44 | nfae 2056 | . . . . . 6 | |
45 | nfae 2056 | . . . . . . 7 | |
46 | axc11 2054 | . . . . . . . . . . . 12 | |
47 | 46 | aecoms 2052 | . . . . . . . . . . 11 |
48 | alnex 1614 | . . . . . . . . . . 11 | |
49 | alnex 1614 | . . . . . . . . . . 11 | |
50 | 47, 48, 49 | 3imtr3g 269 | . . . . . . . . . 10 |
51 | nd3 8985 | . . . . . . . . . . 11 | |
52 | 51 | pm2.21d 106 | . . . . . . . . . 10 |
53 | 50, 52 | jad 162 | . . . . . . . . 9 |
54 | 53 | spsd 1867 | . . . . . . . 8 |
55 | 54 | imim1d 75 | . . . . . . 7 |
56 | 45, 55 | alimd 1876 | . . . . . 6 |
57 | 44, 56 | eximd 1882 | . . . . 5 |
58 | 43, 57 | syl5 32 | . . . 4 |
59 | 58 | a1dd 46 | . . 3 |
60 | 59, 2 | pm2.61d2 160 | . 2 |
61 | 1, 2, 60 | pm2.61ii 165 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
= wceq 1395 E. wex 1612 e. wcel 1818
c0 3784 { csn 4029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-reg 8039 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-pw 4014 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |