![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axpre-lttrn | Unicode version |
Description: Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn 9678. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 9588. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-lttrn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 9529 | . 2 | |
2 | elreal 9529 | . 2 | |
3 | elreal 9529 | . 2 | |
4 | breq1 4455 | . . . 4 | |
5 | 4 | anbi1d 704 | . . 3 |
6 | breq1 4455 | . . 3 | |
7 | 5, 6 | imbi12d 320 | . 2 |
8 | breq2 4456 | . . . 4 | |
9 | breq1 4455 | . . . 4 | |
10 | 8, 9 | anbi12d 710 | . . 3 |
11 | 10 | imbi1d 317 | . 2 |
12 | breq2 4456 | . . . 4 | |
13 | 12 | anbi2d 703 | . . 3 |
14 | breq2 4456 | . . 3 | |
15 | 13, 14 | imbi12d 320 | . 2 |
16 | ltresr 9538 | . . . . 5 | |
17 | ltresr 9538 | . . . . 5 | |
18 | ltsosr 9492 | . . . . . 6 | |
19 | ltrelsr 9466 | . . . . . 6 | |
20 | 18, 19 | sotri 5399 | . . . . 5 |
21 | 16, 17, 20 | syl2anb 479 | . . . 4 |
22 | ltresr 9538 | . . . 4 | |
23 | 21, 22 | sylibr 212 | . . 3 |
24 | 23 | a1i 11 | . 2 |
25 | 1, 2, 3, 7, 11, 15, 24 | 3gencl 3141 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
<. cop 4035 class class class wbr 4452
cnr 9264 c0r 9265
cltr 9270
cr 9512 cltrr 9517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-omul 7154 df-er 7330 df-ec 7332 df-qs 7336 df-ni 9271 df-pli 9272 df-mi 9273 df-lti 9274 df-plpq 9307 df-mpq 9308 df-ltpq 9309 df-enq 9310 df-nq 9311 df-erq 9312 df-plq 9313 df-mq 9314 df-1nq 9315 df-rq 9316 df-ltnq 9317 df-np 9380 df-1p 9381 df-plp 9382 df-ltp 9384 df-enr 9454 df-nr 9455 df-ltr 9458 df-0r 9459 df-r 9523 df-lt 9526 |
Copyright terms: Public domain | W3C validator |