![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axpweq | Unicode version |
Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4630 is not used by the proof. (Contributed by NM, 22-Jun-2009.) |
Ref | Expression |
---|---|
axpweq.1 |
Ref | Expression |
---|---|
axpweq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwidg 4025 | . . . 4 | |
2 | pweq 4015 | . . . . . 6 | |
3 | 2 | eleq2d 2527 | . . . . 5 |
4 | 3 | spcegv 3195 | . . . 4 |
5 | 1, 4 | mpd 15 | . . 3 |
6 | elex 3118 | . . . 4 | |
7 | 6 | exlimiv 1722 | . . 3 |
8 | 5, 7 | impbii 188 | . 2 |
9 | vex 3112 | . . . . 5 | |
10 | 9 | elpw2 4616 | . . . 4 |
11 | pwss 4027 | . . . . 5 | |
12 | dfss2 3492 | . . . . . . 7 | |
13 | 12 | imbi1i 325 | . . . . . 6 |
14 | 13 | albii 1640 | . . . . 5 |
15 | 11, 14 | bitri 249 | . . . 4 |
16 | 10, 15 | bitri 249 | . . 3 |
17 | 16 | exbii 1667 | . 2 |
18 | 8, 17 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 = wceq 1395 E. wex 1612
e. wcel 1818 cvv 3109
C_ wss 3475 ~P cpw 4012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 df-ss 3489 df-pw 4014 |
Copyright terms: Public domain | W3C validator |