![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axregndOLD | Unicode version |
Description: Obsolete proof of axregnd 9002 as of 18-Aug-2019. (Contributed by NM, 3-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axregndOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axregndlem2 9001 | . . . 4 | |
2 | nfnae 2058 | . . . . . 6 | |
3 | nfnae 2058 | . . . . . 6 | |
4 | 2, 3 | nfan 1928 | . . . . 5 |
5 | nfnae 2058 | . . . . . . . 8 | |
6 | nfnae 2058 | . . . . . . . 8 | |
7 | 5, 6 | nfan 1928 | . . . . . . 7 |
8 | nfcvf 2644 | . . . . . . . . . 10 | |
9 | 8 | adantr 465 | . . . . . . . . 9 |
10 | 9 | nfcrd 2625 | . . . . . . . 8 |
11 | nfcvf 2644 | . . . . . . . . . . 11 | |
12 | 11 | adantl 466 | . . . . . . . . . 10 |
13 | 12 | nfcrd 2625 | . . . . . . . . 9 |
14 | 13 | nfnd 1902 | . . . . . . . 8 |
15 | 10, 14 | nfimd 1917 | . . . . . . 7 |
16 | elequ1 1821 | . . . . . . . . 9 | |
17 | elequ1 1821 | . . . . . . . . . 10 | |
18 | 17 | notbid 294 | . . . . . . . . 9 |
19 | 16, 18 | imbi12d 320 | . . . . . . . 8 |
20 | 19 | a1i 11 | . . . . . . 7 |
21 | 7, 15, 20 | cbvald 2025 | . . . . . 6 |
22 | 21 | anbi2d 703 | . . . . 5 |
23 | 4, 22 | exbid 1886 | . . . 4 |
24 | 1, 23 | syl5ib 219 | . . 3 |
25 | 24 | ex 434 | . 2 |
26 | axregndlem1 9000 | . . 3 | |
27 | 26 | aecoms 2052 | . 2 |
28 | 19.8a 1857 | . . 3 | |
29 | nfae 2056 | . . . 4 | |
30 | elirrv 8044 | . . . . . . . . . 10 | |
31 | elequ2 1823 | . . . . . . . . . 10 | |
32 | 30, 31 | mtbii 302 | . . . . . . . . 9 |
33 | 32 | sps 1865 | . . . . . . . 8 |
34 | 33 | a1d 25 | . . . . . . 7 |
35 | 34 | axc4i 1898 | . . . . . 6 |
36 | 35 | anim2i 569 | . . . . 5 |
37 | 36 | expcom 435 | . . . 4 |
38 | 29, 37 | eximd 1882 | . . 3 |
39 | 28, 38 | syl5 32 | . 2 |
40 | 25, 27, 39 | pm2.61ii 165 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
E. wex 1612 F/_ wnfc 2605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-reg 8039 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-un 3480 df-nul 3785 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |