![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axregndlem1 | Unicode version |
Description: Lemma for the Axiom of Regularity with no distinct variable conditions. (Contributed by NM, 3-Jan-2002.) |
Ref | Expression |
---|---|
axregndlem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 1857 | . 2 | |
2 | nfae 2056 | . . 3 | |
3 | nfae 2056 | . . . . . 6 | |
4 | elirrv 8044 | . . . . . . . . 9 | |
5 | elequ1 1821 | . . . . . . . . 9 | |
6 | 4, 5 | mtbii 302 | . . . . . . . 8 |
7 | 6 | sps 1865 | . . . . . . 7 |
8 | 7 | pm2.21d 106 | . . . . . 6 |
9 | 3, 8 | alrimi 1877 | . . . . 5 |
10 | 9 | anim2i 569 | . . . 4 |
11 | 10 | expcom 435 | . . 3 |
12 | 2, 11 | eximd 1882 | . 2 |
13 | 1, 12 | syl5 32 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 A. wal 1393 E. wex 1612 |
This theorem is referenced by: axregndlem2 9001 axregnd 9002 axregndOLD 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-reg 8039 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-un 3480 df-nul 3785 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |