![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axrep1 | Unicode version |
Description: The version of the Axiom
of Replacement used in the Metamath Solitaire
applet http://us.metamath.org/mmsolitaire/mms.html.
Equivalence is
shown via the path ax-rep 4563 -> axrep1 4564 -> axrep2 4565 ->
axrepnd 8990 -> zfcndrep 9013 = ax-rep 4563. (Contributed by NM,
19-Nov-2005.) (Proof shortened by Mario Carneiro,
17-Nov-2016.) |
Ref | Expression |
---|---|
axrep1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ2 1823 | . . . . . . . . 9 | |
2 | 1 | anbi1d 704 | . . . . . . . 8 |
3 | 2 | exbidv 1714 | . . . . . . 7 |
4 | 3 | bibi2d 318 | . . . . . 6 |
5 | 4 | albidv 1713 | . . . . 5 |
6 | 5 | exbidv 1714 | . . . 4 |
7 | 6 | imbi2d 316 | . . 3 |
8 | ax-rep 4563 | . . . 4 | |
9 | 19.3v 1755 | . . . . . . . 8 | |
10 | 9 | imbi1i 325 | . . . . . . 7 |
11 | 10 | albii 1640 | . . . . . 6 |
12 | 11 | exbii 1667 | . . . . 5 |
13 | 12 | albii 1640 | . . . 4 |
14 | nfv 1707 | . . . . . . 7 | |
15 | nfe1 1840 | . . . . . . 7 | |
16 | 14, 15 | nfbi 1934 | . . . . . 6 |
17 | 16 | nfal 1947 | . . . . 5 |
18 | nfv 1707 | . . . . 5 | |
19 | elequ2 1823 | . . . . . . 7 | |
20 | 9 | anbi2i 694 | . . . . . . . . 9 |
21 | 20 | exbii 1667 | . . . . . . . 8 |
22 | 21 | a1i 11 | . . . . . . 7 |
23 | 19, 22 | bibi12d 321 | . . . . . 6 |
24 | 23 | albidv 1713 | . . . . 5 |
25 | 17, 18, 24 | cbvex 2022 | . . . 4 |
26 | 8, 13, 25 | 3imtr3i 265 | . . 3 |
27 | 7, 26 | chvarv 2014 | . 2 |
28 | 27 | 19.35ri 1690 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 E. wex 1612 |
This theorem is referenced by: axrep2 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-rep 4563 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |