![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axrepndlem1 | Unicode version |
Description: Lemma for the Axiom of Replacement with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.) |
Ref | Expression |
---|---|
axrepndlem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axrep2 4565 | . 2 | |
2 | nfnae 2058 | . . 3 | |
3 | nfnae 2058 | . . . . 5 | |
4 | nfnae 2058 | . . . . . 6 | |
5 | nfs1v 2181 | . . . . . . . 8 | |
6 | 5 | a1i 11 | . . . . . . 7 |
7 | nfcvd 2620 | . . . . . . . 8 | |
8 | nfcvf2 2645 | . . . . . . . 8 | |
9 | 7, 8 | nfeqd 2626 | . . . . . . 7 |
10 | 6, 9 | nfimd 1917 | . . . . . 6 |
11 | sbequ12r 1993 | . . . . . . . 8 | |
12 | equequ1 1798 | . . . . . . . 8 | |
13 | 11, 12 | imbi12d 320 | . . . . . . 7 |
14 | 13 | a1i 11 | . . . . . 6 |
15 | 4, 10, 14 | cbvald 2025 | . . . . 5 |
16 | 3, 15 | exbid 1886 | . . . 4 |
17 | nfvd 1708 | . . . . . 6 | |
18 | 8 | nfcrd 2625 | . . . . . . . 8 |
19 | 3, 6 | nfald 1951 | . . . . . . . 8 |
20 | 18, 19 | nfand 1925 | . . . . . . 7 |
21 | 2, 20 | nfexd 1952 | . . . . . 6 |
22 | 17, 21 | nfbid 1933 | . . . . 5 |
23 | elequ1 1821 | . . . . . . . 8 | |
24 | 23 | adantl 466 | . . . . . . 7 |
25 | nfeqf2 2041 | . . . . . . . . . . 11 | |
26 | 3, 25 | nfan1 1927 | . . . . . . . . . 10 |
27 | 11 | adantl 466 | . . . . . . . . . 10 |
28 | 26, 27 | albid 1885 | . . . . . . . . 9 |
29 | 28 | anbi2d 703 | . . . . . . . 8 |
30 | 29 | exbidv 1714 | . . . . . . 7 |
31 | 24, 30 | bibi12d 321 | . . . . . 6 |
32 | 31 | ex 434 | . . . . 5 |
33 | 4, 22, 32 | cbvald 2025 | . . . 4 |
34 | 16, 33 | imbi12d 320 | . . 3 |
35 | 2, 34 | exbid 1886 | . 2 |
36 | 1, 35 | mpbii 211 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
E. wex 1612 F/ wnf 1616 [ wsb 1739 |
This theorem is referenced by: axrepndlem2 8989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-cleq 2449 df-clel 2452 df-nfc 2607 |
Copyright terms: Public domain | W3C validator |