![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axrepndlem2 | Unicode version |
Description: Lemma for the Axiom of Replacement with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
Ref | Expression |
---|---|
axrepndlem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axrepndlem1 8988 | . . 3 | |
2 | nfnae 2058 | . . . . 5 | |
3 | nfnae 2058 | . . . . 5 | |
4 | 2, 3 | nfan 1928 | . . . 4 |
5 | nfnae 2058 | . . . . . . 7 | |
6 | nfnae 2058 | . . . . . . 7 | |
7 | 5, 6 | nfan 1928 | . . . . . 6 |
8 | nfnae 2058 | . . . . . . . 8 | |
9 | nfnae 2058 | . . . . . . . 8 | |
10 | 8, 9 | nfan 1928 | . . . . . . 7 |
11 | nfs1v 2181 | . . . . . . . . 9 | |
12 | 11 | a1i 11 | . . . . . . . 8 |
13 | nfcvf 2644 | . . . . . . . . . 10 | |
14 | 13 | adantl 466 | . . . . . . . . 9 |
15 | nfcvf 2644 | . . . . . . . . . 10 | |
16 | 15 | adantr 465 | . . . . . . . . 9 |
17 | 14, 16 | nfeqd 2626 | . . . . . . . 8 |
18 | 12, 17 | nfimd 1917 | . . . . . . 7 |
19 | 10, 18 | nfald 1951 | . . . . . 6 |
20 | 7, 19 | nfexd 1952 | . . . . 5 |
21 | nfcvd 2620 | . . . . . . . 8 | |
22 | 14, 21 | nfeld 2627 | . . . . . . 7 |
23 | nfv 1707 | . . . . . . . 8 | |
24 | 21, 16 | nfeld 2627 | . . . . . . . . 9 |
25 | 7, 12 | nfald 1951 | . . . . . . . . 9 |
26 | 24, 25 | nfand 1925 | . . . . . . . 8 |
27 | 23, 26 | nfexd 1952 | . . . . . . 7 |
28 | 22, 27 | nfbid 1933 | . . . . . 6 |
29 | 10, 28 | nfald 1951 | . . . . 5 |
30 | 20, 29 | nfimd 1917 | . . . 4 |
31 | nfcvd 2620 | . . . . . . . . 9 | |
32 | nfcvf2 2645 | . . . . . . . . . 10 | |
33 | 32 | adantr 465 | . . . . . . . . 9 |
34 | 31, 33 | nfeqd 2626 | . . . . . . . 8 |
35 | 7, 34 | nfan1 1927 | . . . . . . 7 |
36 | nfcvd 2620 | . . . . . . . . . 10 | |
37 | nfcvf2 2645 | . . . . . . . . . . 11 | |
38 | 37 | adantl 466 | . . . . . . . . . 10 |
39 | 36, 38 | nfeqd 2626 | . . . . . . . . 9 |
40 | 10, 39 | nfan1 1927 | . . . . . . . 8 |
41 | sbequ12r 1993 | . . . . . . . . . 10 | |
42 | 41 | imbi1d 317 | . . . . . . . . 9 |
43 | 42 | adantl 466 | . . . . . . . 8 |
44 | 40, 43 | albid 1885 | . . . . . . 7 |
45 | 35, 44 | exbid 1886 | . . . . . 6 |
46 | elequ2 1823 | . . . . . . . . 9 | |
47 | 46 | adantl 466 | . . . . . . . 8 |
48 | elequ1 1821 | . . . . . . . . . . . . 13 | |
49 | 48 | adantl 466 | . . . . . . . . . . . 12 |
50 | 41 | adantl 466 | . . . . . . . . . . . . 13 |
51 | 35, 50 | albid 1885 | . . . . . . . . . . . 12 |
52 | 49, 51 | anbi12d 710 | . . . . . . . . . . 11 |
53 | 52 | ex 434 | . . . . . . . . . 10 |
54 | 4, 26, 53 | cbvexd 2026 | . . . . . . . . 9 |
55 | 54 | adantr 465 | . . . . . . . 8 |
56 | 47, 55 | bibi12d 321 | . . . . . . 7 |
57 | 40, 56 | albid 1885 | . . . . . 6 |
58 | 45, 57 | imbi12d 320 | . . . . 5 |
59 | 58 | ex 434 | . . . 4 |
60 | 4, 30, 59 | cbvexd 2026 | . . 3 |
61 | 1, 60 | syl5ib 219 | . 2 |
62 | 61 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
E. wex 1612 F/ wnf 1616 [ wsb 1739
F/_ wnfc 2605 |
This theorem is referenced by: axrepnd 8990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-cleq 2449 df-clel 2452 df-nfc 2607 |
Copyright terms: Public domain | W3C validator |