![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axunnd | Unicode version |
Description: A version of the Axiom of Union with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.) |
Ref | Expression |
---|---|
axunnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axunndlem1 8991 | . . . 4 | |
2 | nfnae 2058 | . . . . . 6 | |
3 | nfnae 2058 | . . . . . 6 | |
4 | 2, 3 | nfan 1928 | . . . . 5 |
5 | nfnae 2058 | . . . . . . 7 | |
6 | nfnae 2058 | . . . . . . 7 | |
7 | 5, 6 | nfan 1928 | . . . . . 6 |
8 | nfv 1707 | . . . . . . . 8 | |
9 | nfcvf 2644 | . . . . . . . . . . 11 | |
10 | 9 | adantr 465 | . . . . . . . . . 10 |
11 | nfcvd 2620 | . . . . . . . . . 10 | |
12 | 10, 11 | nfeld 2627 | . . . . . . . . 9 |
13 | nfcvf 2644 | . . . . . . . . . . 11 | |
14 | 13 | adantl 466 | . . . . . . . . . 10 |
15 | 11, 14 | nfeld 2627 | . . . . . . . . 9 |
16 | 12, 15 | nfand 1925 | . . . . . . . 8 |
17 | 8, 16 | nfexd 1952 | . . . . . . 7 |
18 | 17, 12 | nfimd 1917 | . . . . . 6 |
19 | 7, 18 | nfald 1951 | . . . . 5 |
20 | nfcvd 2620 | . . . . . . . . 9 | |
21 | nfcvf2 2645 | . . . . . . . . . 10 | |
22 | 21 | adantr 465 | . . . . . . . . 9 |
23 | 20, 22 | nfeqd 2626 | . . . . . . . 8 |
24 | 7, 23 | nfan1 1927 | . . . . . . 7 |
25 | elequ2 1823 | . . . . . . . . . . . 12 | |
26 | elequ1 1821 | . . . . . . . . . . . 12 | |
27 | 25, 26 | anbi12d 710 | . . . . . . . . . . 11 |
28 | 27 | a1i 11 | . . . . . . . . . 10 |
29 | 4, 16, 28 | cbvexd 2026 | . . . . . . . . 9 |
30 | 29 | adantr 465 | . . . . . . . 8 |
31 | 25 | adantl 466 | . . . . . . . 8 |
32 | 30, 31 | imbi12d 320 | . . . . . . 7 |
33 | 24, 32 | albid 1885 | . . . . . 6 |
34 | 33 | ex 434 | . . . . 5 |
35 | 4, 19, 34 | cbvexd 2026 | . . . 4 |
36 | 1, 35 | mpbii 211 | . . 3 |
37 | 36 | ex 434 | . 2 |
38 | nfae 2056 | . . . 4 | |
39 | nfae 2056 | . . . . . 6 | |
40 | elirrv 8044 | . . . . . . . . 9 | |
41 | elequ2 1823 | . . . . . . . . 9 | |
42 | 40, 41 | mtbiri 303 | . . . . . . . 8 |
43 | 42 | intnanrd 917 | . . . . . . 7 |
44 | 43 | sps 1865 | . . . . . 6 |
45 | 39, 44 | nexd 1883 | . . . . 5 |
46 | 45 | pm2.21d 106 | . . . 4 |
47 | 38, 46 | alrimi 1877 | . . 3 |
48 | 19.8a 1857 | . . 3 | |
49 | 47, 48 | syl 16 | . 2 |
50 | nfae 2056 | . . . 4 | |
51 | nfae 2056 | . . . . . 6 | |
52 | elirrv 8044 | . . . . . . . . 9 | |
53 | elequ1 1821 | . . . . . . . . 9 | |
54 | 52, 53 | mtbiri 303 | . . . . . . . 8 |
55 | 54 | intnand 916 | . . . . . . 7 |
56 | 55 | sps 1865 | . . . . . 6 |
57 | 51, 56 | nexd 1883 | . . . . 5 |
58 | 57 | pm2.21d 106 | . . . 4 |
59 | 50, 58 | alrimi 1877 | . . 3 |
60 | 59, 48 | syl 16 | . 2 |
61 | 37, 49, 60 | pm2.61ii 165 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
E. wex 1612 F/_ wnfc 2605 |
This theorem is referenced by: zfcndun 9014 axunprim 29075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 ax-reg 8039 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-eprel 4796 df-fr 4843 |
Copyright terms: Public domain | W3C validator |