![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axunndlem1 | Unicode version |
Description: Lemma for the Axiom of Union with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.) |
Ref | Expression |
---|---|
axunndlem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2lp 8051 | . . . . . . . 8 | |
2 | elequ2 1823 | . . . . . . . . 9 | |
3 | 2 | anbi2d 703 | . . . . . . . 8 |
4 | 1, 3 | mtbii 302 | . . . . . . 7 |
5 | 4 | sps 1865 | . . . . . 6 |
6 | 5 | nexdv 1884 | . . . . 5 |
7 | 6 | pm2.21d 106 | . . . 4 |
8 | 7 | axc4i 1898 | . . 3 |
9 | 19.8a 1857 | . . 3 | |
10 | 8, 9 | syl 16 | . 2 |
11 | zfun 6593 | . . 3 | |
12 | nfnae 2058 | . . . . 5 | |
13 | nfnae 2058 | . . . . . . 7 | |
14 | nfvd 1708 | . . . . . . . 8 | |
15 | nfcvf 2644 | . . . . . . . . 9 | |
16 | 15 | nfcrd 2625 | . . . . . . . 8 |
17 | 14, 16 | nfand 1925 | . . . . . . 7 |
18 | 13, 17 | nfexd 1952 | . . . . . 6 |
19 | 18, 14 | nfimd 1917 | . . . . 5 |
20 | elequ1 1821 | . . . . . . . . 9 | |
21 | 20 | anbi1d 704 | . . . . . . . 8 |
22 | 21 | exbidv 1714 | . . . . . . 7 |
23 | 22, 20 | imbi12d 320 | . . . . . 6 |
24 | 23 | a1i 11 | . . . . 5 |
25 | 12, 19, 24 | cbvald 2025 | . . . 4 |
26 | 25 | exbidv 1714 | . . 3 |
27 | 11, 26 | mpbii 211 | . 2 |
28 | 10, 27 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
E. wex 1612 |
This theorem is referenced by: axunnd 8992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 ax-reg 8039 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-eprel 4796 df-fr 4843 |
Copyright terms: Public domain | W3C validator |