![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > Mathboxes > baerlem5abmN | Unicode version |
Description: An equality that holds when , , are independent (non-colinear) vectors. Subtraction versions of first and second equations of part (5) in [Baer] p. 46, conjoined to share commonality in their proofs. TODO: Delete if not be needed. (Contributed by NM, 24-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
baerlem3.v | |
baerlem3.m | |
baerlem3.o | |
baerlem3.s | |
baerlem3.n | |
baerlem3.w | |
baerlem3.x | |
baerlem3.c | |
baerlem3.d | |
baerlem3.y | |
baerlem3.z | |
baerlem5a.p |
Ref | Expression |
---|---|
baerlem5abmN |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baerlem3.y | . . . . . . . 8 | |
2 | 1 | eldifad 3422 | . . . . . . 7 |
3 | baerlem3.z | . . . . . . . 8 | |
4 | 3 | eldifad 3422 | . . . . . . 7 |
5 | baerlem3.v | . . . . . . . 8 | |
6 | baerlem5a.p | . . . . . . . 8 | |
7 | eqid 2450 | . . . . . . . 8 | |
8 | baerlem3.m | . . . . . . . 8 | |
9 | 5, 6, 7, 8 | grpsubval 15667 | . . . . . . 7 |
10 | 2, 4, 9 | syl2anc 661 | . . . . . 6 |
11 | 10 | oveq2d 6190 | . . . . 5 |
12 | 11 | sneqd 3971 | . . . 4 |
13 | 12 | fveq2d 5777 | . . 3 |
14 | baerlem3.o | . . . 4 | |
15 | baerlem3.s | . . . 4 | |
16 | baerlem3.n | . . . 4 | |
17 | baerlem3.w | . . . 4 | |
18 | baerlem3.x | . . . 4 | |
19 | lveclmod 17277 | . . . . . . 7 | |
20 | 17, 19 | syl 16 | . . . . . 6 |
21 | 5, 7 | lmodvnegcl 17076 | . . . . . 6 |
22 | 20, 4, 21 | syl2anc 661 | . . . . 5 |
23 | eqid 2450 | . . . . . . 7 | |
24 | 5, 23, 16, 20, 2, 4 | lspprcl 17149 | . . . . . . 7 |
25 | baerlem3.c | . . . . . . 7 | |
26 | 5, 14, 23, 20, 24, 18, 25 | lssneln0 17123 | . . . . . 6 |
27 | 5, 16, 17, 18, 2, 4, 25 | lspindpi 17303 | . . . . . . 7 |
28 | 27 | simpld 459 | . . . . . 6 |
29 | 5, 14, 16, 17, 26, 2, 28 | lspsnne1 17288 | . . . . 5 |
30 | baerlem3.d | . . . . . . . . 9 | |
31 | 30 | necomd 2716 | . . . . . . . 8 |
32 | 5, 14, 16, 17, 3, 2, 31 | lspsnne1 17288 | . . . . . . 7 |
33 | 5, 16, 17, 18, 4, 2, 32, 25 | lspexchn2 17302 | . . . . . 6 |
34 | lmodgrp 17045 | . . . . . . . . . 10 | |
35 | 17, 19, 34 | 3syl 20 | . . . . . . . . 9 |
36 | 35 | adantr 465 | . . . . . . . 8 |
37 | 4 | adantr 465 | . . . . . . . 8 |
38 | 5, 7 | grpinvinv 15679 | . . . . . . . 8 |
39 | 36, 37, 38 | syl2anc 661 | . . . . . . 7 |
40 | 20 | adantr 465 | . . . . . . . 8 |
41 | 5, 23, 16, 20, 2, 18 | lspprcl 17149 | . . . . . . . . 9 |
42 | 41 | adantr 465 | . . . . . . . 8 |
43 | simpr 461 | . . . . . . . 8 | |
44 | 23, 7 | lssvnegcl 17127 | . . . . . . . 8 |
45 | 40, 42, 43, 44 | syl3anc 1219 | . . . . . . 7 |
46 | 39, 45 | eqeltrrd 2537 | . . . . . 6 |
47 | 33, 46 | mtand 659 | . . . . 5 |
48 | 5, 16, 17, 22, 18, 2, 29, 47 | lspexchn2 17302 | . . . 4 |
49 | 5, 7, 16 | lspsnneg 17177 | . . . . . 6 |
50 | 20, 4, 49 | syl2anc 661 | . . . . 5 |
51 | 30, 50 | neeqtrrd 2745 | . . . 4 |
52 | 5, 14, 7 | grpinvnzcl 15684 | . . . . 5 |
53 | 35, 3, 52 | syl2anc 661 | . . . 4 |
54 | 5, 8, 14, 15, 16, 17, 18, 48, 51, 1, 53, 6 | baerlem5a 35640 | . . 3 |
55 | 50 | oveq2d 6190 | . . . 4 |
56 | 5, 6, 8, 7, 35, 18, 4 | grpsubinv 15685 | . . . . . . 7 |
57 | 56 | sneqd 3971 | . . . . . 6 |
58 | 57 | fveq2d 5777 | . . . . 5 |
59 | 58 | oveq1d 6189 | . . . 4 |
60 | 55, 59 | ineq12d 3635 | . . 3 |
61 | 13, 54, 60 | 3eqtrd 2494 | . 2 |
62 | 10 | sneqd 3971 | . . . 4 |
63 | 62 | fveq2d 5777 | . . 3 |
64 | 5, 8, 14, 15, 16, 17, 18, 48, 51, 1, 53, 6 | baerlem5b 35641 | . . 3 |
65 | 50 | oveq2d 6190 | . . . 4 |
66 | 10 | eqcomd 2457 | . . . . . . . 8 |
67 | 66 | oveq2d 6190 | . . . . . . 7 |
68 | 67 | sneqd 3971 | . . . . . 6 |
69 | 68 | fveq2d 5777 | . . . . 5 |
70 | 69 | oveq1d 6189 | . . . 4 |
71 | 65, 70 | ineq12d 3635 | . . 3 |
72 | 63, 64, 71 | 3eqtrd 2494 | . 2 |
73 | 61, 72 | jca 532 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1370 e. wcel 1757
=/= wne 2641 \ cdif 3407 i^i cin 3409
{ csn 3959 { cpr 3961 ` cfv 5500
(class class class)co 6174 cbs 14260 cplusg 14324 c0g 14464
cgrp 15496 cminusg 15497 csg 15499
clsm 16221 clmod 17038 clss 17103 clspn 17142 clvec 17273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1709 ax-7 1729 ax-8 1759 ax-9 1761 ax-10 1776 ax-11 1781 ax-12 1793 ax-13 1944 ax-ext 2429 ax-rep 4485 ax-sep 4495 ax-nul 4503 ax-pow 4552 ax-pr 4613 ax-un 6456 ax-cnex 9423 ax-resscn 9424 ax-1cn 9425 ax-icn 9426 ax-addcl 9427 ax-addrcl 9428 ax-mulcl 9429 ax-mulrcl 9430 ax-mulcom 9431 ax-addass 9432 ax-mulass 9433 ax-distr 9434 ax-i2m1 9435 ax-1ne0 9436 ax-1rid 9437 ax-rnegex 9438 ax-rrecex 9439 ax-cnre 9440 ax-pre-lttri 9441 ax-pre-lttrn 9442 ax-pre-ltadd 9443 ax-pre-mulgt0 9444 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 966 df-3an 967 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1702 df-eu 2263 df-mo 2264 df-clab 2436 df-cleq 2442 df-clel 2445 df-nfc 2598 df-ne 2643 df-nel 2644 df-ral 2797 df-rex 2798 df-reu 2799 df-rmo 2800 df-rab 2801 df-v 3054 df-sbc 3269 df-csb 3371 df-dif 3413 df-un 3415 df-in 3417 df-ss 3424 df-pss 3426 df-nul 3720 df-if 3874 df-pw 3944 df-sn 3960 df-pr 3962 df-tp 3964 df-op 3966 df-uni 4174 df-int 4211 df-iun 4255 df-br 4375 df-opab 4433 df-mpt 4434 df-tr 4468 df-eprel 4714 df-id 4718 df-po 4723 df-so 4724 df-fr 4761 df-we 4763 df-ord 4804 df-on 4805 df-lim 4806 df-suc 4807 df-xp 4928 df-rel 4929 df-cnv 4930 df-co 4931 df-dm 4932 df-rn 4933 df-res 4934 df-ima 4935 df-iota 5463 df-fun 5502 df-fn 5503 df-f 5504 df-f1 5505 df-fo 5506 df-f1o 5507 df-fv 5508 df-riota 6135 df-ov 6177 df-oprab 6178 df-mpt2 6179 df-om 6561 df-1st 6661 df-2nd 6662 df-tpos 6829 df-recs 6916 df-rdg 6950 df-er 7185 df-en 7395 df-dom 7396 df-sdom 7397 df-pnf 9505 df-mnf 9506 df-xr 9507 df-ltxr 9508 df-le 9509 df-sub 9682 df-neg 9683 df-nn 10408 df-2 10465 df-3 10466 df-ndx 14263 df-slot 14264 df-base 14265 df-sets 14266 df-ress 14267 df-plusg 14337 df-mulr 14338 df-0g 14466 df-mnd 15501 df-submnd 15551 df-grp 15631 df-minusg 15632 df-sbg 15633 df-subg 15764 df-cntz 15921 df-lsm 16223 df-cmn 16367 df-abl 16368 df-mgp 16681 df-ur 16693 df-rng 16737 df-oppr 16805 df-dvdsr 16823 df-unit 16824 df-invr 16854 df-drng 16924 df-lmod 17040 df-lss 17104 df-lsp 17143 df-lvec 17274 |
Copyright terms: Public domain | W3C validator |