![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > bamalip | Unicode version |
Description: "Bamalip", one of the syllogisms of Aristotelian logic. All is , all is , and exist, therefore some is . (In Aristotelian notation, AAI-4: PaM and MaS therefore SiP.) Like barbari 2400. (Contributed by David A. Wheeler, 28-Aug-2016.) |
Ref | Expression |
---|---|
bamalip.maj | |
bamalip.min | |
bamalip.e |
Ref | Expression |
---|---|
bamalip |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bamalip.e | . 2 | |
2 | bamalip.maj | . . . . 5 | |
3 | 2 | spi 1864 | . . . 4 |
4 | bamalip.min | . . . . 5 | |
5 | 4 | spi 1864 | . . . 4 |
6 | 3, 5 | syl 16 | . . 3 |
7 | 6 | ancri 552 | . 2 |
8 | 1, 7 | eximii 1658 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 E. wex 1612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 |
Copyright terms: Public domain | W3C validator |