![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > bcm1k | Unicode version |
Description: The proportion of one binomial coefficient to another with decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.) |
Ref | Expression |
---|---|
bcm1k |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz2 11720 | . . . . . . . . 9 | |
2 | nnuz 11145 | . . . . . . . . 9 | |
3 | 1, 2 | syl6eleqr 2556 | . . . . . . . 8 |
4 | 3 | nnnn0d 10877 | . . . . . . 7 |
5 | faccl 12363 | . . . . . . 7 | |
6 | 4, 5 | syl 16 | . . . . . 6 |
7 | 6 | nncnd 10577 | . . . . 5 |
8 | fznn0sub 11745 | . . . . . . 7 | |
9 | nn0p1nn 10860 | . . . . . . 7 | |
10 | 8, 9 | syl 16 | . . . . . 6 |
11 | 10 | nncnd 10577 | . . . . 5 |
12 | 10 | nnnn0d 10877 | . . . . . . . 8 |
13 | faccl 12363 | . . . . . . . 8 | |
14 | 12, 13 | syl 16 | . . . . . . 7 |
15 | elfznn 11743 | . . . . . . . 8 | |
16 | nnm1nn0 10862 | . . . . . . . 8 | |
17 | faccl 12363 | . . . . . . . 8 | |
18 | 15, 16, 17 | 3syl 20 | . . . . . . 7 |
19 | 14, 18 | nnmulcld 10608 | . . . . . 6 |
20 | nncn 10569 | . . . . . . 7 | |
21 | nnne0 10593 | . . . . . . 7 | |
22 | 20, 21 | jca 532 | . . . . . 6 |
23 | 19, 22 | syl 16 | . . . . 5 |
24 | 15 | nncnd 10577 | . . . . . 6 |
25 | 15 | nnne0d 10605 | . . . . . 6 |
26 | 24, 25 | jca 532 | . . . . 5 |
27 | divmuldiv 10269 | . . . . 5 | |
28 | 7, 11, 23, 26, 27 | syl22anc 1229 | . . . 4 |
29 | elfzel2 11715 | . . . . . . . . . 10 | |
30 | 29 | zcnd 10995 | . . . . . . . . 9 |
31 | 1cnd 9633 | . . . . . . . . 9 | |
32 | 30, 24, 31 | subsubd 9982 | . . . . . . . 8 |
33 | 32 | fveq2d 5875 | . . . . . . 7 |
34 | 33 | oveq1d 6311 | . . . . . 6 |
35 | 34 | oveq2d 6312 | . . . . 5 |
36 | 32 | oveq1d 6311 | . . . . 5 |
37 | 35, 36 | oveq12d 6314 | . . . 4 |
38 | facp1 12358 | . . . . . . . . 9 | |
39 | 8, 38 | syl 16 | . . . . . . . 8 |
40 | 39 | eqcomd 2465 | . . . . . . 7 |
41 | facnn2 12362 | . . . . . . . 8 | |
42 | 15, 41 | syl 16 | . . . . . . 7 |
43 | 40, 42 | oveq12d 6314 | . . . . . 6 |
44 | faccl 12363 | . . . . . . . . 9 | |
45 | 8, 44 | syl 16 | . . . . . . . 8 |
46 | 45 | nncnd 10577 | . . . . . . 7 |
47 | 15 | nnnn0d 10877 | . . . . . . . . 9 |
48 | faccl 12363 | . . . . . . . . 9 | |
49 | 47, 48 | syl 16 | . . . . . . . 8 |
50 | 49 | nncnd 10577 | . . . . . . 7 |
51 | 46, 50, 11 | mul32d 9811 | . . . . . 6 |
52 | 14 | nncnd 10577 | . . . . . . 7 |
53 | 18 | nncnd 10577 | . . . . . . 7 |
54 | 52, 53, 24 | mulassd 9640 | . . . . . 6 |
55 | 43, 51, 54 | 3eqtr4d 2508 | . . . . 5 |
56 | 55 | oveq2d 6312 | . . . 4 |
57 | 28, 37, 56 | 3eqtr4d 2508 | . . 3 |
58 | 7, 11 | mulcomd 9638 | . . . 4 |
59 | 45, 49 | nnmulcld 10608 | . . . . . 6 |
60 | 59 | nncnd 10577 | . . . . 5 |
61 | 60, 11 | mulcomd 9638 | . . . 4 |
62 | 58, 61 | oveq12d 6314 | . . 3 |
63 | 59 | nnne0d 10605 | . . . 4 |
64 | 10 | nnne0d 10605 | . . . 4 |
65 | 7, 60, 11, 63, 64 | divcan5d 10371 | . . 3 |
66 | 57, 62, 65 | 3eqtrrd 2503 | . 2 |
67 | 0p1e1 10672 | . . . . . 6 | |
68 | 67 | oveq1i 6306 | . . . . 5 |
69 | 0z 10900 | . . . . . 6 | |
70 | fzp1ss 11760 | . . . . . 6 | |
71 | 69, 70 | ax-mp 5 | . . . . 5 |
72 | 68, 71 | eqsstr3i 3534 | . . . 4 |
73 | 72 | sseli 3499 | . . 3 |
74 | bcval2 12383 | . . 3 | |
75 | 73, 74 | syl 16 | . 2 |
76 | ax-1cn 9571 | . . . . . . . 8 | |
77 | npcan 9852 | . . . . . . . 8 | |
78 | 30, 76, 77 | sylancl 662 | . . . . . . 7 |
79 | peano2zm 10932 | . . . . . . . 8 | |
80 | uzid 11124 | . . . . . . . 8 | |
81 | peano2uz 11163 | . . . . . . . 8 | |
82 | 29, 79, 80, 81 | 4syl 21 | . . . . . . 7 |
83 | 78, 82 | eqeltrrd 2546 | . . . . . 6 |
84 | fzss2 11752 | . . . . . 6 | |
85 | 83, 84 | syl 16 | . . . . 5 |
86 | elfzmlbm 11813 | . . . . 5 | |
87 | 85, 86 | sseldd 3504 | . . . 4 |
88 | bcval2 12383 | . . . 4 | |
89 | 87, 88 | syl 16 | . . 3 |
90 | 89 | oveq1d 6311 | . 2 |
91 | 66, 75, 90 | 3eqtr4d 2508 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
C_ wss 3475 ` cfv 5593 (class class class)co 6296
cc 9511 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 cmin 9828 cdiv 10231 cn 10561 cn0 10820
cz 10889 cuz 11110
cfz 11701 cfa 12353 cbc 12380 |
This theorem is referenced by: bcp1nk 12395 bcpasc 12399 basellem5 23358 bpolydiflem 29816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-seq 12108 df-fac 12354 df-bc 12381 |
Copyright terms: Public domain | W3C validator |