Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcxmaslem1 Unicode version

Theorem bcxmaslem1 13646
 Description: Lemma for bcxmas 13647. (Contributed by Paul Chapman, 18-May-2007.)
Assertion
Ref Expression
bcxmaslem1

Proof of Theorem bcxmaslem1
StepHypRef Expression
1 oveq2 6304 . 2
2 id 22 . 2
31, 2oveq12d 6314 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  =wceq 1395  (class class class)co 6296   caddc 9516   cbc 12380 This theorem is referenced by:  bcxmas  13647  sylow1lem1  16618 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-iota 5556  df-fv 5601  df-ov 6299
 Copyright terms: Public domain W3C validator