![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > bi2anan9 | Unicode version |
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
bi2an9.1 | |
bi2an9.2 |
Ref | Expression |
---|---|
bi2anan9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2an9.1 | . . 3 | |
2 | 1 | anbi1d 704 | . 2 |
3 | bi2an9.2 | . . 3 | |
4 | 3 | anbi2d 703 | . 2 |
5 | 2, 4 | sylan9bb 699 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 |
This theorem is referenced by: bi2anan9r 874 2eu6OLD 2384 2reu5 3308 ralprg 4078 raltpg 4080 prssg 4185 prsspwg 4187 opelopab2a 4767 opelxp 5034 eqrel 5097 eqrelrel 5109 brcog 5174 dff13 6166 resoprab2 6399 ovig 6424 dfoprab4f 6858 f1o2ndf1 6908 om00el 7244 oeoe 7267 eroveu 7425 endisj 7624 infxpen 8413 dfac5lem4 8528 sornom 8678 ltsrpr 9475 axcnre 9562 axmulgt0 9680 wloglei 10110 mulge0b 10437 addltmul 10799 ltxr 11353 sumsqeq0 12246 rlim 13318 cpnnen 13962 dvds2lem 13996 gcddvds 14153 opoe 14335 omoe 14336 opeo 14337 omeo 14338 pcqmul 14377 xpsfrnel2 14962 eqgval 16250 frgpuplem 16790 mpfind 18205 2ndcctbss 19956 txbasval 20107 cnmpt12 20168 cnmpt22 20175 prdsxmslem2 21032 ishtpy 21472 bcthlem1 21763 bcth 21768 volun 21955 vitali 22022 itg1addlem3 22105 rolle 22391 mumullem2 23454 lgsquadlem3 23631 lgsquad 23632 2sqlem7 23645 axpasch 24244 usgra2adedgwlkonALT 24616 usgra2wlkspthlem1 24619 el2wlkonotot1 24874 frg2wot1 25057 frg2woteqm 25059 numclwwlkovg 25087 hlimi 26105 leopadd 27051 eqrelrd2 27467 isinftm 27725 metidv 27871 altopthg 29617 altopthbg 29618 brsegle 29758 itg2addnclem3 30068 fzadd2 30234 prtlem13 30609 pellex 30771 tpres 32554 dib1dim 36892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |