MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bi3 Unicode version

Theorem bi3 187
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.)
Assertion
Ref Expression
bi3

Proof of Theorem bi3
StepHypRef Expression
1 df-bi 185 . . 3
2 simprim 150 . . 3
31, 2ax-mp 5 . 2
43expi 149 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184
This theorem is referenced by:  impbii  188  impbidd  189  dfbi1  192  bisymOLD  290  eqsbc3rVD  33640  orbi1rVD  33648  3impexpVD  33656  3impexpbicomVD  33657  imbi12VD  33673  sbcim2gVD  33675  sb5ALTVD  33713  bj-bisym  34179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
  Copyright terms: Public domain W3C validator