![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > bi3 | Unicode version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) |
Ref | Expression |
---|---|
bi3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 185 | . . 3 | |
2 | simprim 150 | . . 3 | |
3 | 1, 2 | ax-mp 5 | . 2 |
4 | 3 | expi 149 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 |
This theorem is referenced by: impbii 188 impbidd 189 dfbi1 192 bisymOLD 290 eqsbc3rVD 33640 orbi1rVD 33648 3impexpVD 33656 3impexpbicomVD 33657 imbi12VD 33673 sbcim2gVD 33675 sb5ALTVD 33713 bj-bisym 34179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |