MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianir Unicode version

Theorem bianir 967
Description: If a wff is equivalent to its conjunction with another wff, the other wwf follows. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Assertion
Ref Expression
bianir

Proof of Theorem bianir
StepHypRef Expression
1 bicom 200 . 2
2 bi1 186 . . 3
32impcom 430 . 2
41, 3sylan2b 475 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369
This theorem is referenced by:  suppimacnv  6929  bnj970  34005  bnj1001  34016  bj-bibibi  34175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator