MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi12i Unicode version

Theorem bibi12i 315
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.)
Hypotheses
Ref Expression
bibi2i.1
bibi12i.2
Assertion
Ref Expression
bibi12i

Proof of Theorem bibi12i
StepHypRef Expression
1 bibi12i.2 . . 3
21bibi2i 313 . 2
3 bibi2i.1 . . 3
43bibi1i 314 . 2
52, 4bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184
This theorem is referenced by:  pm5.32  636  orbidi  932  pm5.7  934  xorbi12i  1376  abbi  2588  nfnid  4681  asymref  5388  isocnv2  6227  zfcndrep  9013  f1omvdco3  16474  brsymdif  29478  brtxpsd  29544  bj-sbeq  34468  rp-fakeoranass  37738  rp-fakeinunass  37740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
  Copyright terms: Public domain W3C validator