![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > bibi12i | Unicode version |
Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
bibi2i.1 | |
bibi12i.2 |
Ref | Expression |
---|---|
bibi12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bibi12i.2 | . . 3 | |
2 | 1 | bibi2i 313 | . 2 |
3 | bibi2i.1 | . . 3 | |
4 | 3 | bibi1i 314 | . 2 |
5 | 2, 4 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 |
This theorem is referenced by: pm5.32 636 orbidi 932 pm5.7 934 xorbi12i 1376 abbi 2588 nfnid 4681 asymref 5388 isocnv2 6227 zfcndrep 9013 f1omvdco3 16474 brsymdif 29478 brtxpsd 29544 bj-sbeq 34468 rp-fakeoranass 37738 rp-fakeinunass 37740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |