MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi1i Unicode version

Theorem bibi1i 314
Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.)
Hypothesis
Ref Expression
bibi2i.1
Assertion
Ref Expression
bibi1i

Proof of Theorem bibi1i
StepHypRef Expression
1 bicom 200 . 2
2 bibi2i.1 . . 3
32bibi2i 313 . 2
4 bicom 200 . 2
51, 3, 43bitri 271 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184
This theorem is referenced by:  bibi12i  315  biluk  933  xorass  1367  hadbi  1454  sbrbis  2146  ssequn1  3673  asymref  5388  aceq1  8519  aceq0  8520  zfac  8861  zfcndac  9018  funcnvmptOLD  27509  axacprim  29079  symdifass  29477  rp-fakeanorass  37737  rp-fakenanass  37739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
  Copyright terms: Public domain W3C validator