![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > bibi1i | Unicode version |
Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
bibi2i.1 |
Ref | Expression |
---|---|
bibi1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 200 | . 2 | |
2 | bibi2i.1 | . . 3 | |
3 | 2 | bibi2i 313 | . 2 |
4 | bicom 200 | . 2 | |
5 | 1, 3, 4 | 3bitri 271 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 |
This theorem is referenced by: bibi12i 315 biluk 933 xorass 1367 hadbi 1454 sbrbis 2146 ssequn1 3673 asymref 5388 aceq1 8519 aceq0 8520 zfac 8861 zfcndac 9018 funcnvmptOLD 27509 axacprim 29079 symdifass 29477 rp-fakeanorass 37737 rp-fakenanass 37739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |