![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > bibi2d | Unicode version |
Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
imbid.1 |
Ref | Expression |
---|---|
bibi2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . . . 5 | |
2 | 1 | pm5.74i 245 | . . . 4 |
3 | 2 | bibi2i 313 | . . 3 |
4 | pm5.74 244 | . . 3 | |
5 | pm5.74 244 | . . 3 | |
6 | 3, 4, 5 | 3bitr4i 277 | . 2 |
7 | 6 | pm5.74ri 246 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184 |
This theorem is referenced by: bibi1d 319 bibi12d 321 biantr 931 bimsc1 938 eujust 2284 eujustALT 2285 euf 2292 reu6i 3290 sbc2or 3336 axrep1 4564 axrep2 4565 axrep3 4566 zfrepclf 4569 axsep2 4574 zfauscl 4575 copsexg 4737 copsexgOLD 4738 euotd 4753 cnveq0 5468 iotaval 5567 iota5 5576 eufnfv 6146 isoeq1 6215 isoeq3 6217 isores2 6229 isores3 6231 isotr 6232 isoini2 6235 riota5f 6282 caovordg 6482 caovord 6486 dfoprab4f 6858 seqomlem2 7135 xpf1o 7699 aceq0 8520 dfac5 8530 zfac 8861 zfcndrep 9013 zfcndac 9018 ltasr 9498 axpre-ltadd 9565 absmod0 13136 absz 13144 smuval2 14132 prmdvdsexp 14255 isacs2 15050 isacs1i 15054 mreacs 15055 abvfval 17467 abvpropd 17491 isclo2 19589 t0sep 19825 kqt0lem 20237 r0sep 20249 iccpnfcnv 21444 rolle 22391 fargshiftfo 24638 2wlkeq 24707 ismndo2 25347 eigre 26754 fgreu 27513 fcnvgreu 27514 xrge0iifcnv 27915 cvmlift2lem13 28760 iota5f 29102 nn0prpwlem 30140 nn0prpw 30141 mrefg2 30639 zindbi 30882 jm2.19lem3 30933 iotavalb 31337 bj-axrep1 34374 bj-axrep2 34375 bj-axrep3 34376 bj-axsep2 34493 islaut 35807 ispautN 35823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |