MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibif Unicode version

Theorem bibif 346
Description: Transfer negation via an equivalence. (Contributed by NM, 3-Oct-2007.) (Proof shortened by Wolf Lammen, 28-Jan-2013.)
Assertion
Ref Expression
bibif

Proof of Theorem bibif
StepHypRef Expression
1 nbn2 345 . 2
2 bicom 200 . 2
31, 2syl6rbb 262 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184
This theorem is referenced by:  nbn  347  bj-bibibi  34175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
  Copyright terms: Public domain W3C validator