MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bifal Unicode version

Theorem bifal 1408
Description: A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bifal.1
Assertion
Ref Expression
bifal

Proof of Theorem bifal
StepHypRef Expression
1 bifal.1 . 2
2 fal 1402 . 2
31, 22false 350 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184   wfal 1400
This theorem is referenced by:  falantru  1421  trubifal  1434  rusgra0edg  24955  frgrareg  25117  frgraregord013  25118  bicontr  30477  aibnbaif  32102  ralnralall  32294  bj-df-nul  34584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-tru 1398  df-fal 1401
  Copyright terms: Public domain W3C validator