![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > biimpac | Unicode version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 |
Ref | Expression |
---|---|
biimpac |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 | |
2 | 1 | biimpcd 224 | . 2 |
3 | 2 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 |
This theorem is referenced by: gencbvex2 3154 2reu5 3308 ordnbtwn 4973 poltletr 5407 tz6.12-1 5887 nfunsn 5902 onsucuni2 6669 smo11 7054 omlimcl 7246 omxpenlem 7638 fodomr 7688 fodomfib 7820 r1val1 8225 alephval3 8512 dfac5lem4 8528 dfac5 8530 axdc4lem 8856 fodomb 8925 distrlem1pr 9424 map2psrpr 9508 supsrlem 9509 eqle 9708 snopiswrd 12556 swrd0 12658 reuccats1lem 12705 repswswrd 12756 cshwidxmod 12774 sumz 13544 prod1 13751 divalglem8 14058 pospo 15603 mgm2nsgrplem2 16037 lsmcv 17787 opsrtoslem1 18148 psrbagfsupp 18175 psrbagsuppfiOLD 18176 madugsum 19145 hauscmplem 19906 bwth 19910 ptbasfi 20082 hmphindis 20298 fbncp 20340 fgcl 20379 fixufil 20423 uffixfr 20424 mbfima 22039 mbfimaicc 22040 ig1pdvds 22577 tgldimor 23893 ax5seglem4 24235 axcontlem2 24268 axcontlem4 24270 uhgraun 24311 usgfiregdegfi 24911 eupai 24967 usgreghash2spot 25069 spansncvi 26570 eigposi 26755 pjnormssi 27087 sumdmdlem 27337 rhmdvdsr 27808 rtrclind 29072 cgrdegen 29654 btwnconn1lem11 29747 btwnconn1lem12 29748 btwnconn1lem14 29750 fin2so 30040 dvasin 30103 isbnd2 30279 pm13.13a 31314 iotavalb 31337 fourierdlem40 31929 fourierdlem78 31967 2ffzoeq 32341 uhgun 32380 biimpa21 33342 suctrALTcf 33722 suctrALTcfVD 33723 suctrALT3 33724 unisnALT 33726 bnj168 33785 bnj521 33792 bnj964 34001 bnj966 34002 bnj1398 34090 bj-elid3 34601 bj-ccinftydisj 34616 atcvrj0 35152 paddasslem5 35548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |