![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > bija | Unicode version |
Description: Combine antecedents into a single biconditional. This inference, reminiscent of ja 161, is reversible: The hypotheses can be deduced from the conclusion alone (see pm5.1im 238 and pm5.21im 349). (Contributed by Wolf Lammen, 13-May-2013.) |
Ref | Expression |
---|---|
bija.1 | |
bija.2 |
Ref | Expression |
---|---|
bija |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2 198 | . . 3 | |
2 | bija.1 | . . 3 | |
3 | 1, 2 | syli 37 | . 2 |
4 | bi1 186 | . . . 4 | |
5 | 4 | con3d 133 | . . 3 |
6 | bija.2 | . . 3 | |
7 | 5, 6 | syli 37 | . 2 |
8 | 3, 7 | pm2.61d 158 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 |
This theorem is referenced by: equveli 2088 wl-aleq 29988 wl-nfeqfb 29990 bj-bibibi 34175 rp-fakeimass 37736 rp-fakenanass 37739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |