MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biorfi Unicode version

Theorem biorfi 407
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.)
Hypothesis
Ref Expression
biorfi.1
Assertion
Ref Expression
biorfi

Proof of Theorem biorfi
StepHypRef Expression
1 biorfi.1 . 2
2 orc 385 . . 3
3 orel2 383 . . 3
42, 3impbid2 204 . 2
51, 4ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  \/wo 368
This theorem is referenced by:  pm4.43  927  dn1  966  stoic1a  1605  indifdir  3753  un0  3810  opthprc  5052  imadif  5668  xrsupss  11529  mdegleb  22464  ind1a  28034  bj-ifid2  37711  bj-ifnot  37717  bj-ifdfan  37727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370
  Copyright terms: Public domain W3C validator