![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > biorfi | Unicode version |
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) |
Ref | Expression |
---|---|
biorfi.1 |
Ref | Expression |
---|---|
biorfi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biorfi.1 | . 2 | |
2 | orc 385 | . . 3 | |
3 | orel2 383 | . . 3 | |
4 | 2, 3 | impbid2 204 | . 2 |
5 | 1, 4 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
\/ wo 368 |
This theorem is referenced by: pm4.43 927 dn1 966 stoic1a 1605 indifdir 3753 un0 3810 opthprc 5052 imadif 5668 xrsupss 11529 mdegleb 22464 ind1a 28034 bj-ifid2 37711 bj-ifnot 37717 bj-ifdfan 37727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-or 370 |
Copyright terms: Public domain | W3C validator |