MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biortn Unicode version

Theorem biortn 406
Description: A wff is equivalent to its negated disjunction with falsehood. (Contributed by NM, 9-Jul-2012.)
Assertion
Ref Expression
biortn

Proof of Theorem biortn
StepHypRef Expression
1 notnot1 122 . 2
2 biorf 405 . 2
31, 2syl 16 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  \/wo 368
This theorem is referenced by:  oranabs  856  xrdifh  27591  ballotlemfc0  28431  ballotlemfcc  28432  4atlem3a  35321  4atlem3b  35322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370
  Copyright terms: Public domain W3C validator