MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitru Unicode version

Theorem bitru 1407
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1
Assertion
Ref Expression
bitru

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2
2 tru 1399 . 2
31, 22th 239 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184   wtru 1396
This theorem is referenced by:  truorfal  1424  falortru  1425  truimtru  1427  falimtru  1429  falimfal  1430  notfal  1432  trubitru  1433  falbifal  1436  0frgp  16797  astbstanbst  32104  dandysum2p2e4  32170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-tru 1398
  Copyright terms: Public domain W3C validator