MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bm1.1OLD Unicode version

Theorem bm1.1OLD 2441
Description: Obsolete proof of bm1.1 2440 as of 12-Nov-2019. (Contributed by NM, 30-Jun-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bm1.1.1
Assertion
Ref Expression
bm1.1OLD
Distinct variable group:   ,

Proof of Theorem bm1.1OLD
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfv 1707 . . . . . . . 8
2 bm1.1.1 . . . . . . . 8
31, 2nfbi 1934 . . . . . . 7
43nfal 1947 . . . . . 6
5 elequ2 1823 . . . . . . . 8
65bibi1d 319 . . . . . . 7
76albidv 1713 . . . . . 6
84, 7sbie 2149 . . . . 5
9 19.26 1680 . . . . . 6
10 biantr 931 . . . . . . . 8
1110alimi 1633 . . . . . . 7
12 ax-ext 2435 . . . . . . 7
1311, 12syl 16 . . . . . 6
149, 13sylbir 213 . . . . 5
158, 14sylan2b 475 . . . 4
1615gen2 1619 . . 3
1716jctr 542 . 2
18 nfv 1707 . . 3
1918eu2 2326 . 2
2017, 19sylibr 212 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  E.wex 1612  F/wnf 1616  [wsb 1739  E!weu 2282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287
  Copyright terms: Public domain W3C validator