![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > bm1.3ii | Unicode version |
Description: Convert implication to equivalence using the Separation Scheme (Aussonderung) ax-sep 4573. Similar to Theorem 1.3ii of [BellMachover] p. 463. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
bm1.3ii.1 |
Ref | Expression |
---|---|
bm1.3ii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bm1.3ii.1 | . . . . 5 | |
2 | elequ2 1823 | . . . . . . . 8 | |
3 | 2 | imbi2d 316 | . . . . . . 7 |
4 | 3 | albidv 1713 | . . . . . 6 |
5 | 4 | cbvexv 2024 | . . . . 5 |
6 | 1, 5 | mpbi 208 | . . . 4 |
7 | ax-sep 4573 | . . . 4 | |
8 | 6, 7 | pm3.2i 455 | . . 3 |
9 | 8 | exan 1973 | . 2 |
10 | 19.42v 1775 | . . . 4 | |
11 | bimsc1 938 | . . . . . 6 | |
12 | 11 | alanimi 1637 | . . . . 5 |
13 | 12 | eximi 1656 | . . . 4 |
14 | 10, 13 | sylbir 213 | . . 3 |
15 | 14 | exlimiv 1722 | . 2 |
16 | 9, 15 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 E. wex 1612 |
This theorem is referenced by: axpow3 4633 pwex 4635 zfpair2 4692 axun2 6594 uniex2 6595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-sep 4573 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |