Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj105 Unicode version

Theorem bnj105 31642
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj105

Proof of Theorem bnj105
StepHypRef Expression
1 df1o2 6924 . 2
2 p0ex 4474 . 2
31, 2eqeltri 2508 1
Colors of variables: wff setvar class
Syntax hints:  e.wcel 1756   cvv 2967   c0 3632  {csn 3872   c1o 6905
This theorem is referenced by:  bnj106  31790  bnj118  31791  bnj121  31792  bnj125  31794  bnj130  31796  bnj153  31802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-v 2969  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-pw 3857  df-sn 3873  df-suc 4720  df-1o 6912
  Copyright terms: Public domain W3C validator