![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > brecop2 | Unicode version |
Description: Binary relation on a quotient set. Lemma for real number construction. Eliminates antecedent from last hypothesis. (Contributed by NM, 13-Feb-1996.) |
Ref | Expression |
---|---|
brecop2.1 | |
brecop2.5 | |
brecop2.6 | |
brecop2.7 | |
brecop2.8 | |
brecop2.9 | |
brecop2.10 | |
brecop2.11 |
Ref | Expression |
---|---|
brecop2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brecop2.7 | . . . 4 | |
2 | 1 | brel 5053 | . . 3 |
3 | brecop2.5 | . . . . . . 7 | |
4 | ecelqsdm 7400 | . . . . . . 7 | |
5 | 3, 4 | mpan 670 | . . . . . 6 |
6 | brecop2.6 | . . . . . 6 | |
7 | 5, 6 | eleq2s 2565 | . . . . 5 |
8 | opelxp 5034 | . . . . 5 | |
9 | 7, 8 | sylib 196 | . . . 4 |
10 | ecelqsdm 7400 | . . . . . . 7 | |
11 | 3, 10 | mpan 670 | . . . . . 6 |
12 | 11, 6 | eleq2s 2565 | . . . . 5 |
13 | opelxp 5034 | . . . . 5 | |
14 | 12, 13 | sylib 196 | . . . 4 |
15 | 9, 14 | anim12i 566 | . . 3 |
16 | 2, 15 | syl 16 | . 2 |
17 | brecop2.8 | . . . . 5 | |
18 | 17 | brel 5053 | . . . 4 |
19 | brecop2.10 | . . . . . 6 | |
20 | brecop2.9 | . . . . . 6 | |
21 | 19, 20 | ndmovrcl 6461 | . . . . 5 |
22 | 19, 20 | ndmovrcl 6461 | . . . . 5 |
23 | 21, 22 | anim12i 566 | . . . 4 |
24 | 18, 23 | syl 16 | . . 3 |
25 | an42 825 | . . 3 | |
26 | 24, 25 | sylib 196 | . 2 |
27 | brecop2.11 | . 2 | |
28 | 16, 26, 27 | pm5.21nii 353 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 cvv 3109
C_ wss 3475 c0 3784 <. cop 4035 class class class wbr 4452
X. cxp 5002 dom cdm 5004 (class class class)co 6296
[ cec 7328 /. cqs 7329 |
This theorem is referenced by: ltsrpr 9475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-xp 5010 df-cnv 5012 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fv 5601 df-ov 6299 df-ec 7332 df-qs 7336 |
Copyright terms: Public domain | W3C validator |