MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bren2 Unicode version

Theorem bren2 7566
Description: Equinumerosity expressed in terms of dominance and strict dominance. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
bren2

Proof of Theorem bren2
StepHypRef Expression
1 endom 7562 . . 3
2 sdomnen 7564 . . . 4
32con2i 120 . . 3
41, 3jca 532 . 2
5 brdom2 7565 . . . 4
65biimpi 194 . . 3
76orcanai 913 . 2
84, 7impbii 188 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  \/wo 368  /\wa 369   class class class wbr 4452   cen 7533   cdom 7534   csdm 7535
This theorem is referenced by:  marypha1lem  7913  tskwe  8352  infxpenlem  8412  cdainflem  8592  axcclem  8858  alephsuc3  8976  gchen1  9024  gchen2  9025  inatsk  9177  ufilen  20431  dirith2  23713  mblfinlem1  30051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-xp 5010  df-rel 5011  df-f1o 5600  df-en 7537  df-dom 7538  df-sdom 7539
  Copyright terms: Public domain W3C validator