MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brsdom Unicode version

Theorem brsdom 7558
Description: Strict dominance relation, meaning " is strictly greater in size than ." Definition of [Mendelson] p. 255. (Contributed by NM, 25-Jun-1998.)
Assertion
Ref Expression
brsdom

Proof of Theorem brsdom
StepHypRef Expression
1 df-sdom 7539 . . 3
21eleq2i 2535 . 2
3 df-br 4453 . 2
4 df-br 4453 . . . 4
5 df-br 4453 . . . . 5
65notbii 296 . . . 4
74, 6anbi12i 697 . . 3
8 eldif 3485 . . 3
97, 8bitr4i 252 . 2
102, 3, 93bitr4i 277 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  /\wa 369  e.wcel 1818  \cdif 3472  <.cop 4035   class class class wbr 4452   cen 7533   cdom 7534   csdm 7535
This theorem is referenced by:  sdomdom  7563  sdomnen  7564  0sdomg  7666  sdomdomtr  7670  domsdomtr  7672  domtriord  7683  canth2  7690  php2  7722  php3  7723  nnsdomo  7732  nnsdomg  7799  card2inf  8002  cardsdomelir  8375  cardsdom2  8390  fidomtri2  8396  cardmin2  8400  alephordi  8476  alephord  8477  isfin4-3  8716  isfin5-2  8792  canthnum  9048  canthwe  9050  canthp1  9053  gchcdaidm  9067  gchxpidm  9068  gchhar  9078  axgroth6  9227  hashsdom  12449  ruc  13976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-dif 3478  df-br 4453  df-sdom 7539
  Copyright terms: Public domain W3C validator