MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brun Unicode version

Theorem brun 4500
Description: The union of two binary relations. (Contributed by NM, 21-Dec-2008.)
Assertion
Ref Expression
brun

Proof of Theorem brun
StepHypRef Expression
1 elun 3644 . 2
2 df-br 4453 . 2
3 df-br 4453 . . 3
4 df-br 4453 . . 3
53, 4orbi12i 521 . 2
61, 2, 53bitr4i 277 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  \/wo 368  e.wcel 1818  u.cun 3473  <.cop 4035   class class class wbr 4452
This theorem is referenced by:  dmun  5214  qfto  5393  poleloe  5406  cnvun  5416  coundi  5513  coundir  5514  fununmo  5636  brdifun  7357  fpwwe2lem13  9041  ltxrlt  9676  ltxr  11353  dfle2  11382  dfso2  29183  dfon3  29542  brcup  29589  dfrdg4  29600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-un 3480  df-br 4453
  Copyright terms: Public domain W3C validator