![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > brwdom3 | Unicode version |
Description: Condition for weak dominance with a condition reminiscent of wdomd 8028. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
brwdom3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . 2 | |
2 | elex 3118 | . 2 | |
3 | brwdom2 8020 | . . . . 5 | |
4 | 3 | adantl 466 | . . . 4 |
5 | dffo3 6046 | . . . . . . . 8 | |
6 | 5 | simprbi 464 | . . . . . . 7 |
7 | elpwi 4021 | . . . . . . . . . 10 | |
8 | ssrexv 3564 | . . . . . . . . . 10 | |
9 | 7, 8 | syl 16 | . . . . . . . . 9 |
10 | 9 | adantl 466 | . . . . . . . 8 |
11 | 10 | ralimdv 2867 | . . . . . . 7 |
12 | 6, 11 | syl5 32 | . . . . . 6 |
13 | 12 | eximdv 1710 | . . . . 5 |
14 | 13 | rexlimdva 2949 | . . . 4 |
15 | 4, 14 | sylbid 215 | . . 3 |
16 | simpll 753 | . . . . . 6 | |
17 | simplr 755 | . . . . . 6 | |
18 | eqeq1 2461 | . . . . . . . . . . . 12 | |
19 | 18 | rexbidv 2968 | . . . . . . . . . . 11 |
20 | fveq2 5871 | . . . . . . . . . . . . 13 | |
21 | 20 | eqeq2d 2471 | . . . . . . . . . . . 12 |
22 | 21 | cbvrexv 3085 | . . . . . . . . . . 11 |
23 | 19, 22 | syl6bb 261 | . . . . . . . . . 10 |
24 | 23 | cbvralv 3084 | . . . . . . . . 9 |
25 | 24 | biimpi 194 | . . . . . . . 8 |
26 | 25 | adantl 466 | . . . . . . 7 |
27 | 26 | r19.21bi 2826 | . . . . . 6 |
28 | 16, 17, 27 | wdom2d 8027 | . . . . 5 |
29 | 28 | ex 434 | . . . 4 |
30 | 29 | exlimdv 1724 | . . 3 |
31 | 15, 30 | impbid 191 | . 2 |
32 | 1, 2, 31 | syl2an 477 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 A. wral 2807 E. wrex 2808
cvv 3109
C_ wss 3475 ~P cpw 4012 class class class wbr 4452
--> wf 5589 -onto-> wfo 5591 ` cfv 5593
cwdom 8004 |
This theorem is referenced by: brwdom3i 8030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-wdom 8006 |
Copyright terms: Public domain | W3C validator |