MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  calemos Unicode version

Theorem calemos 2417
Description: "Calemos", one of the syllogisms of Aristotelian logic. All is (PaM), no is (MeS), and exist, therefore some is not (SoP). (In Aristotelian notation, AEO-4: PaM and MeS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
calemos.maj
calemos.min
calemos.e
Assertion
Ref Expression
calemos

Proof of Theorem calemos
StepHypRef Expression
1 calemos.e . 2
2 calemos.min . . . . . 6
32spi 1864 . . . . 5
43con2i 120 . . . 4
5 calemos.maj . . . . 5
65spi 1864 . . . 4
74, 6nsyl 121 . . 3
87ancli 551 . 2
91, 8eximii 1658 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  /\wa 369  A.wal 1393  E.wex 1612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613
  Copyright terms: Public domain W3C validator