MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  camestres Unicode version

Theorem camestres 2438
Description: "Camestres", one of the syllogisms of Aristotelian logic. All is , and no is , therefore no is . (In Aristotelian notation, AEE-2: PaM and SeM therefore SeP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
camestres.maj
camestres.min
Assertion
Ref Expression
camestres

Proof of Theorem camestres
StepHypRef Expression
1 camestres.min . . . 4
21spi 1775 . . 3
3 camestres.maj . . . 4
43spi 1775 . . 3
52, 4nsyl 116 . 2
65ax-gen 1570 1
Colors of variables: wff set class
Syntax hints:  -.wn 3  ->wi 4  A.wal 1564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1570  ax-4 1581  ax-5 1644  ax-6 1685  ax-7 1705  ax-12 1768
This theorem depends on definitions:  df-bi 179  df-ex 1566
  Copyright terms: Public domain W3C validator