![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > canth4 | Unicode version |
Description: An "effective" form of Cantor's theorem canth 6254. For any function from the powerset of to , there are two definable sets and which witness non-injectivity of . Corollary 1.3 of [KanamoriPincus] p. 416. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
canth4.1 | |
canth4.2 | |
canth4.3 |
Ref | Expression |
---|---|
canth4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . . . . . . . 8 | |
2 | eqid 2457 | . . . . . . . 8 | |
3 | 1, 2 | pm3.2i 455 | . . . . . . 7 |
4 | canth4.1 | . . . . . . . 8 | |
5 | elex 3118 | . . . . . . . . 9 | |
6 | 5 | 3ad2ant1 1017 | . . . . . . . 8 |
7 | simpl2 1000 | . . . . . . . . 9 | |
8 | simp3 998 | . . . . . . . . . 10 | |
9 | 8 | sselda 3503 | . . . . . . . . 9 |
10 | 7, 9 | ffvelrnd 6032 | . . . . . . . 8 |
11 | canth4.2 | . . . . . . . 8 | |
12 | 4, 6, 10, 11 | fpwwe 9045 | . . . . . . 7 |
13 | 3, 12 | mpbiri 233 | . . . . . 6 |
14 | 13 | simpld 459 | . . . . 5 |
15 | 4, 6 | fpwwelem 9044 | . . . . 5 |
16 | 14, 15 | mpbid 210 | . . . 4 |
17 | 16 | simpld 459 | . . 3 |
18 | 17 | simpld 459 | . 2 |
19 | canth4.3 | . . . . 5 | |
20 | cnvimass 5362 | . . . . 5 | |
21 | 19, 20 | eqsstri 3533 | . . . 4 |
22 | 17 | simprd 463 | . . . . . 6 |
23 | dmss 5207 | . . . . . 6 | |
24 | 22, 23 | syl 16 | . . . . 5 |
25 | dmxpid 5227 | . . . . 5 | |
26 | 24, 25 | syl6sseq 3549 | . . . 4 |
27 | 21, 26 | syl5ss 3514 | . . 3 |
28 | 13 | simprd 463 | . . 3 |
29 | 16 | simprd 463 | . . . . . . 7 |
30 | 29 | simpld 459 | . . . . . 6 |
31 | weso 4875 | . . . . . 6 | |
32 | 30, 31 | syl 16 | . . . . 5 |
33 | sonr 4826 | . . . . 5 | |
34 | 32, 28, 33 | syl2anc 661 | . . . 4 |
35 | 19 | eleq2i 2535 | . . . . 5 |
36 | fvex 5881 | . . . . . 6 | |
37 | 36 | eliniseg 5371 | . . . . . 6 |
38 | 36, 37 | ax-mp 5 | . . . . 5 |
39 | 35, 38 | bitri 249 | . . . 4 |
40 | 34, 39 | sylnibr 305 | . . 3 |
41 | 27, 28, 40 | ssnelpssd 3891 | . 2 |
42 | 29 | simprd 463 | . . . 4 |
43 | sneq 4039 | . . . . . . . . 9 | |
44 | 43 | imaeq2d 5342 | . . . . . . . 8 |
45 | 44, 19 | syl6eqr 2516 | . . . . . . 7 |
46 | 45 | fveq2d 5875 | . . . . . 6 |
47 | id 22 | . . . . . 6 | |
48 | 46, 47 | eqeq12d 2479 | . . . . 5 |
49 | 48 | rspcv 3206 | . . . 4 |
50 | 28, 42, 49 | sylc 60 | . . 3 |
51 | 50 | eqcomd 2465 | . 2 |
52 | 18, 41, 51 | 3jca 1176 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 A. wral 2807
cvv 3109
i^i cin 3474 C_ wss 3475 C. wpss 3476
~P cpw 4012 { csn 4029 U. cuni 4249
class class class wbr 4452 { copab 4509 Or wor 4804
We wwe 4842 X. cxp 5002 `' ccnv 5003
dom cdm 5004 " cima 5007 --> wf 5589
` cfv 5593 ccrd 8337 |
This theorem is referenced by: canthnumlem 9047 canthp1lem2 9052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-1st 6800 df-recs 7061 df-en 7537 df-oi 7956 df-card 8341 |
Copyright terms: Public domain | W3C validator |