![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > canthnumlem | Unicode version |
Description: Lemma for canthnum 9048. (Contributed by Mario Carneiro, 19-May-2015.) |
Ref | Expression |
---|---|
canth4.1 | |
canth4.2 | |
canth4.3 |
Ref | Expression |
---|---|
canthnumlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 5786 | . . . . 5 | |
2 | ssid 3522 | . . . . . 6 | |
3 | canth4.1 | . . . . . . 7 | |
4 | canth4.2 | . . . . . . 7 | |
5 | canth4.3 | . . . . . . 7 | |
6 | 3, 4, 5 | canth4 9046 | . . . . . 6 |
7 | 2, 6 | mp3an3 1313 | . . . . 5 |
8 | 1, 7 | sylan2 474 | . . . 4 |
9 | 8 | simp3d 1010 | . . 3 |
10 | simpr 461 | . . . 4 | |
11 | 8 | simp1d 1008 | . . . . . 6 |
12 | elpw2g 4615 | . . . . . . 7 | |
13 | 12 | adantr 465 | . . . . . 6 |
14 | 11, 13 | mpbird 232 | . . . . 5 |
15 | eqid 2457 | . . . . . . . . . . . . 13 | |
16 | eqid 2457 | . . . . . . . . . . . . 13 | |
17 | 15, 16 | pm3.2i 455 | . . . . . . . . . . . 12 |
18 | elex 3118 | . . . . . . . . . . . . . 14 | |
19 | 18 | adantr 465 | . . . . . . . . . . . . 13 |
20 | 10, 1 | syl 16 | . . . . . . . . . . . . . 14 |
21 | 20 | ffvelrnda 6031 | . . . . . . . . . . . . 13 |
22 | 3, 19, 21, 4 | fpwwe 9045 | . . . . . . . . . . . 12 |
23 | 17, 22 | mpbiri 233 | . . . . . . . . . . 11 |
24 | 23 | simpld 459 | . . . . . . . . . 10 |
25 | 3, 19 | fpwwelem 9044 | . . . . . . . . . 10 |
26 | 24, 25 | mpbid 210 | . . . . . . . . 9 |
27 | 26 | simprd 463 | . . . . . . . 8 |
28 | 27 | simpld 459 | . . . . . . 7 |
29 | fvex 5881 | . . . . . . . 8 | |
30 | weeq1 4872 | . . . . . . . 8 | |
31 | 29, 30 | spcev 3201 | . . . . . . 7 |
32 | 28, 31 | syl 16 | . . . . . 6 |
33 | ween 8437 | . . . . . 6 | |
34 | 32, 33 | sylibr 212 | . . . . 5 |
35 | 14, 34 | elind 3687 | . . . 4 |
36 | 8 | simp2d 1009 | . . . . . . . 8 |
37 | 36 | pssssd 3600 | . . . . . . 7 |
38 | 37, 11 | sstrd 3513 | . . . . . 6 |
39 | elpw2g 4615 | . . . . . . 7 | |
40 | 39 | adantr 465 | . . . . . 6 |
41 | 38, 40 | mpbird 232 | . . . . 5 |
42 | ssnum 8441 | . . . . . 6 | |
43 | 34, 37, 42 | syl2anc 661 | . . . . 5 |
44 | 41, 43 | elind 3687 | . . . 4 |
45 | f1fveq 6170 | . . . 4 | |
46 | 10, 35, 44, 45 | syl12anc 1226 | . . 3 |
47 | 9, 46 | mpbid 210 | . 2 |
48 | 36 | pssned 3601 | . . . 4 |
49 | 48 | necomd 2728 | . . 3 |
50 | 49 | neneqd 2659 | . 2 |
51 | 47, 50 | pm2.65da 576 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 E. wex 1612 e. wcel 1818
A. wral 2807 cvv 3109
i^i cin 3474 C_ wss 3475 C. wpss 3476
~P cpw 4012 { csn 4029 U. cuni 4249
class class class wbr 4452 { copab 4509 We wwe 4842
X. cxp 5002 `' ccnv 5003 dom cdm 5004
" cima 5007 --> wf 5589 -1-1-> wf1 5590 ` cfv 5593
ccrd 8337 |
This theorem is referenced by: canthnum 9048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-1st 6800 df-recs 7061 df-er 7330 df-en 7537 df-dom 7538 df-oi 7956 df-card 8341 |
Copyright terms: Public domain | W3C validator |