![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cantnfcl | Unicode version |
Description: Basic properties of the order isomorphism used later. The support of an is a finite subset of , so it is well-ordered by and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
Ref | Expression |
---|---|
cantnfs.s | |
cantnfs.a | |
cantnfs.b | |
cantnfcl.g | |
cantnfcl.f |
Ref | Expression |
---|---|
cantnfcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppssdm 6931 | . . . . 5 | |
2 | cantnfcl.f | . . . . . . . 8 | |
3 | cantnfs.s | . . . . . . . . 9 | |
4 | cantnfs.a | . . . . . . . . 9 | |
5 | cantnfs.b | . . . . . . . . 9 | |
6 | 3, 4, 5 | cantnfs 8106 | . . . . . . . 8 |
7 | 2, 6 | mpbid 210 | . . . . . . 7 |
8 | 7 | simpld 459 | . . . . . 6 |
9 | fdm 5740 | . . . . . 6 | |
10 | 8, 9 | syl 16 | . . . . 5 |
11 | 1, 10 | syl5sseq 3551 | . . . 4 |
12 | onss 6626 | . . . . 5 | |
13 | 5, 12 | syl 16 | . . . 4 |
14 | 11, 13 | sstrd 3513 | . . 3 |
15 | epweon 6619 | . . 3 | |
16 | wess 4871 | . . 3 | |
17 | 14, 15, 16 | mpisyl 18 | . 2 |
18 | ovex 6324 | . . . . . 6 | |
19 | 18 | a1i 11 | . . . . 5 |
20 | cantnfcl.g | . . . . . 6 | |
21 | 20 | oion 7982 | . . . . 5 |
22 | 19, 21 | syl 16 | . . . 4 |
23 | 7 | simprd 463 | . . . . . 6 |
24 | 23 | fsuppimpd 7856 | . . . . 5 |
25 | 20 | oien 7984 | . . . . . 6 |
26 | 19, 17, 25 | syl2anc 661 | . . . . 5 |
27 | enfii 7757 | . . . . 5 | |
28 | 24, 26, 27 | syl2anc 661 | . . . 4 |
29 | 22, 28 | elind 3687 | . . 3 |
30 | onfin2 7729 | . . 3 | |
31 | 29, 30 | syl6eleqr 2556 | . 2 |
32 | 17, 31 | jca 532 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 cvv 3109
i^i cin 3474 C_ wss 3475 c0 3784 class class class wbr 4452
cep 4794
We wwe 4842 con0 4883 dom cdm 5004 --> wf 5589
(class class class)co 6296 com 6700
csupp 6918 cen 7533 cfn 7536 cfsupp 7849 OrdIso coi 7955 ccnf 8099 |
This theorem is referenced by: cantnfval2 8109 cantnfle 8111 cantnflt 8112 cantnflt2 8113 cantnff 8114 cantnfp1lem2 8119 cantnfp1lem3 8120 cantnflem1b 8126 cantnflem1d 8128 cantnflem1 8129 cnfcomlem 8164 cnfcom 8165 cnfcom2lem 8166 cnfcom3lem 8168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fsupp 7850 df-oi 7956 df-cnf 8100 |
Copyright terms: Public domain | W3C validator |