![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cantnffvalOLD | Unicode version |
Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) Obsolete version of cantnffval 8101 as of 28-Jun-2019. Proof modified to avoid an old version of definition df-cnf 8100. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
cantnffvalOLD.1 | |
cantnffvalOLD.2 | |
cantnffvalOLD.3 |
Ref | Expression |
---|---|
cantnffvalOLD |
S
, ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnffvalOLD.1 | . . . 4 | |
2 | elmapi 7460 | . . . . . . . 8 | |
3 | ffun 5738 | . . . . . . . 8 | |
4 | 2, 3 | syl 16 | . . . . . . 7 |
5 | id 22 | . . . . . . 7 | |
6 | 0ex 4582 | . . . . . . . 8 | |
7 | 6 | a1i 11 | . . . . . . 7 |
8 | funisfsupp 7854 | . . . . . . 7 | |
9 | 4, 5, 7, 8 | syl3anc 1228 | . . . . . 6 |
10 | vex 3112 | . . . . . . . . 9 | |
11 | suppimacnv 6929 | . . . . . . . . . 10 | |
12 | df1o2 7161 | . . . . . . . . . . . . 13 | |
13 | 12 | eqcomi 2470 | . . . . . . . . . . . 12 |
14 | 13 | difeq2i 3618 | . . . . . . . . . . 11 |
15 | 14 | imaeq2i 5340 | . . . . . . . . . 10 |
16 | 11, 15 | syl6eq 2514 | . . . . . . . . 9 |
17 | 10, 6, 16 | mp2an 672 | . . . . . . . 8 |
18 | 17 | a1i 11 | . . . . . . 7 |
19 | 18 | eleq1d 2526 | . . . . . 6 |
20 | 9, 19 | bitr2d 254 | . . . . 5 |
21 | 20 | rabbiia 3098 | . . . 4 |
22 | 1, 21 | eqtri 2486 | . . 3 |
23 | cantnffvalOLD.2 | . . 3 | |
24 | cantnffvalOLD.3 | . . 3 | |
25 | 22, 23, 24 | cantnffval 8101 | . 2 |
26 | vex 3112 | . . . . . . . 8 | |
27 | 26, 6 | pm3.2i 455 | . . . . . . 7 |
28 | suppimacnv 6929 | . . . . . . 7 | |
29 | 27, 28 | mp1i 12 | . . . . . 6 |
30 | 13 | a1i 11 | . . . . . . . 8 |
31 | 30 | difeq2d 3621 | . . . . . . 7 |
32 | 31 | imaeq2d 5342 | . . . . . 6 |
33 | 29, 32 | eqtrd 2498 | . . . . 5 |
34 | oieq2 7959 | . . . . 5 | |
35 | 33, 34 | syl 16 | . . . 4 |
36 | 35 | csbeq1d 3441 | . . 3 |
37 | 36 | mpteq2dv 4539 | . 2 |
38 | 25, 37 | eqtrd 2498 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
{ crab 2811 cvv 3109
[_ csb 3434 \ cdif 3472 c0 3784 { csn 4029 class class class wbr 4452
e. cmpt 4510 cep 4794
con0 4883 `' ccnv 5003 dom cdm 5004
" cima 5007 Fun wfun 5587 --> wf 5589
` cfv 5593 (class class class)co 6296
e. cmpt2 6298 csupp 6918 seqom cseqom 7131 c1o 7142
coa 7146
comu 7147
coe 7148
cmap 7439
cfn 7536 cfsupp 7849 OrdIso coi 7955 ccnf 8099 |
This theorem is referenced by: cantnfdmOLD 8104 cantnfvalOLD 8138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-map 7441 df-fsupp 7850 df-oi 7956 df-cnf 8100 |
Copyright terms: Public domain | W3C validator |