![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cantnflem1b | Unicode version |
Description: Lemma for cantnf 8133. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.) |
Ref | Expression |
---|---|
cantnfs.s | |
cantnfs.a | |
cantnfs.b | |
oemapval.t | |
oemapval.f | |
oemapval.g | |
oemapvali.r | |
oemapvali.x | |
cantnflem1.o |
Ref | Expression |
---|---|
cantnflem1b |
S
,,,,, ,,,,,, ,O
,,,, ,,,, ,,,,, , ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 757 | . . . 4 | |
2 | cantnflem1.o | . . . . . . . 8 | |
3 | 2 | oicl 7975 | . . . . . . 7 |
4 | cantnfs.b | . . . . . . . . . . . 12 | |
5 | suppssdm 6931 | . . . . . . . . . . . . 13 | |
6 | oemapval.g | . . . . . . . . . . . . . . . 16 | |
7 | cantnfs.s | . . . . . . . . . . . . . . . . 17 | |
8 | cantnfs.a | . . . . . . . . . . . . . . . . 17 | |
9 | 7, 8, 4 | cantnfs 8106 | . . . . . . . . . . . . . . . 16 |
10 | 6, 9 | mpbid 210 | . . . . . . . . . . . . . . 15 |
11 | 10 | simpld 459 | . . . . . . . . . . . . . 14 |
12 | fdm 5740 | . . . . . . . . . . . . . 14 | |
13 | 11, 12 | syl 16 | . . . . . . . . . . . . 13 |
14 | 5, 13 | syl5sseq 3551 | . . . . . . . . . . . 12 |
15 | 4, 14 | ssexd 4599 | . . . . . . . . . . 11 |
16 | 7, 8, 4, 2, 6 | cantnfcl 8107 | . . . . . . . . . . . 12 |
17 | 16 | simpld 459 | . . . . . . . . . . 11 |
18 | 2 | oiiso 7983 | . . . . . . . . . . 11 |
19 | 15, 17, 18 | syl2anc 661 | . . . . . . . . . 10 |
20 | isof1o 6221 | . . . . . . . . . 10 | |
21 | 19, 20 | syl 16 | . . . . . . . . 9 |
22 | f1ocnv 5833 | . . . . . . . . 9 | |
23 | f1of 5821 | . . . . . . . . 9 | |
24 | 21, 22, 23 | 3syl 20 | . . . . . . . 8 |
25 | oemapval.t | . . . . . . . . 9 | |
26 | oemapval.f | . . . . . . . . 9 | |
27 | oemapvali.r | . . . . . . . . 9 | |
28 | oemapvali.x | . . . . . . . . 9 | |
29 | 7, 8, 4, 25, 26, 6, 27, 28 | cantnflem1a 8125 | . . . . . . . 8 |
30 | 24, 29 | ffvelrnd 6032 | . . . . . . 7 |
31 | ordelon 4907 | . . . . . . 7 | |
32 | 3, 30, 31 | sylancr 663 | . . . . . 6 |
33 | 32 | adantr 465 | . . . . 5 |
34 | 3 | a1i 11 | . . . . . . . 8 |
35 | ordelon 4907 | . . . . . . . 8 | |
36 | 34, 35 | sylan 471 | . . . . . . 7 |
37 | sucelon 6652 | . . . . . . 7 | |
38 | 36, 37 | sylibr 212 | . . . . . 6 |
39 | 38 | adantrr 716 | . . . . 5 |
40 | ontri1 4917 | . . . . 5 | |
41 | 33, 39, 40 | syl2anc 661 | . . . 4 |
42 | 1, 41 | mpbid 210 | . . 3 |
43 | 19 | adantr 465 | . . . . . 6 |
44 | ordtr 4897 | . . . . . . . 8 | |
45 | 3, 44 | mp1i 12 | . . . . . . 7 |
46 | simprl 756 | . . . . . . 7 | |
47 | trsuc 4967 | . . . . . . 7 | |
48 | 45, 46, 47 | syl2anc 661 | . . . . . 6 |
49 | 30 | adantr 465 | . . . . . 6 |
50 | isorel 6222 | . . . . . 6 | |
51 | 43, 48, 49, 50 | syl12anc 1226 | . . . . 5 |
52 | fvex 5881 | . . . . . 6 | |
53 | 52 | epelc 4798 | . . . . 5 |
54 | fvex 5881 | . . . . . 6 | |
55 | 54 | epelc 4798 | . . . . 5 |
56 | 51, 53, 55 | 3bitr3g 287 | . . . 4 |
57 | f1ocnvfv2 6183 | . . . . . . 7 | |
58 | 21, 29, 57 | syl2anc 661 | . . . . . 6 |
59 | 58 | adantr 465 | . . . . 5 |
60 | 59 | eleq2d 2527 | . . . 4 |
61 | 56, 60 | bitrd 253 | . . 3 |
62 | 42, 61 | mtbid 300 | . 2 |
63 | 7, 8, 4, 25, 26, 6, 27, 28 | oemapvali 8124 | . . . . . 6 |
64 | 63 | simp1d 1008 | . . . . 5 |
65 | onelon 4908 | . . . . 5 | |
66 | 4, 64, 65 | syl2anc 661 | . . . 4 |
67 | 66 | adantr 465 | . . 3 |
68 | 4 | adantr 465 | . . . 4 |
69 | 14 | adantr 465 | . . . . 5 |
70 | 2 | oif 7976 | . . . . . . 7 |
71 | 70 | ffvelrni 6030 | . . . . . 6 |
72 | 48, 71 | syl 16 | . . . . 5 |
73 | 69, 72 | sseldd 3504 | . . . 4 |
74 | onelon 4908 | . . . 4 | |
75 | 68, 73, 74 | syl2anc 661 | . . 3 |
76 | ontri1 4917 | . . 3 | |
77 | 67, 75, 76 | syl2anc 661 | . 2 |
78 | 62, 77 | mpbird 232 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 A. wral 2807 E. wrex 2808
{ crab 2811 cvv 3109
C_ wss 3475 c0 3784 U. cuni 4249 class class class wbr 4452
{ copab 4509 Tr wtr 4545
cep 4794
We wwe 4842 Ord word 4882 con0 4883 suc csuc 4885 `' ccnv 5003
dom cdm 5004 --> wf 5589 -1-1-onto-> wf1o 5592 ` cfv 5593 Isom wiso 5594
(class class class)co 6296 com 6700
csupp 6918 cfsupp 7849 OrdIso coi 7955 ccnf 8099 |
This theorem is referenced by: cantnflem1c 8127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fsupp 7850 df-oi 7956 df-cnf 8100 |
Copyright terms: Public domain | W3C validator |