![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cantnflem1c | Unicode version |
Description: Lemma for cantnf 8133. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.) (Proof shortened by AV, 4-Apr-2020.) |
Ref | Expression |
---|---|
cantnfs.s | |
cantnfs.a | |
cantnfs.b | |
oemapval.t | |
oemapval.f | |
oemapval.g | |
oemapvali.r | |
oemapvali.x | |
cantnflem1.o |
Ref | Expression |
---|---|
cantnflem1c |
S
,,,,, ,,,,,, ,O
,,,, ,,,, ,,,,, , ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.b | . . 3 | |
2 | 1 | ad3antrrr 729 | . 2 |
3 | simplr 755 | . 2 | |
4 | oemapval.g | . . . . . 6 | |
5 | cantnfs.s | . . . . . . 7 | |
6 | cantnfs.a | . . . . . . 7 | |
7 | 5, 6, 1 | cantnfs 8106 | . . . . . 6 |
8 | 4, 7 | mpbid 210 | . . . . 5 |
9 | 8 | simpld 459 | . . . 4 |
10 | ffn 5736 | . . . 4 | |
11 | 9, 10 | syl 16 | . . 3 |
12 | 11 | ad3antrrr 729 | . 2 |
13 | oemapval.t | . . . . . . 7 | |
14 | oemapval.f | . . . . . . 7 | |
15 | oemapvali.r | . . . . . . 7 | |
16 | oemapvali.x | . . . . . . 7 | |
17 | 5, 6, 1, 13, 14, 4, 15, 16 | oemapvali 8124 | . . . . . 6 |
18 | 17 | simp3d 1010 | . . . . 5 |
19 | 18 | ad3antrrr 729 | . . . 4 |
20 | cantnflem1.o | . . . . . . 7 | |
21 | 5, 6, 1, 13, 14, 4, 15, 16, 20 | cantnflem1b 8126 | . . . . . 6 |
22 | 21 | ad2antrr 725 | . . . . 5 |
23 | simprr 757 | . . . . 5 | |
24 | 17 | simp1d 1008 | . . . . . . . 8 |
25 | onelon 4908 | . . . . . . . 8 | |
26 | 1, 24, 25 | syl2anc 661 | . . . . . . 7 |
27 | 26 | ad3antrrr 729 | . . . . . 6 |
28 | onss 6626 | . . . . . . . . . 10 | |
29 | 1, 28 | syl 16 | . . . . . . . . 9 |
30 | 29 | sselda 3503 | . . . . . . . 8 |
31 | 30 | adantlr 714 | . . . . . . 7 |
32 | 31 | adantr 465 | . . . . . 6 |
33 | ontr2 4930 | . . . . . 6 | |
34 | 27, 32, 33 | syl2anc 661 | . . . . 5 |
35 | 22, 23, 34 | mp2and 679 | . . . 4 |
36 | eleq2 2530 | . . . . . 6 | |
37 | fveq2 5871 | . . . . . . 7 | |
38 | fveq2 5871 | . . . . . . 7 | |
39 | 37, 38 | eqeq12d 2479 | . . . . . 6 |
40 | 36, 39 | imbi12d 320 | . . . . 5 |
41 | 40 | rspcv 3206 | . . . 4 |
42 | 3, 19, 35, 41 | syl3c 61 | . . 3 |
43 | simprl 756 | . . 3 | |
44 | 42, 43 | eqnetrrd 2751 | . 2 |
45 | fvn0elsupp 6934 | . 2 | |
46 | 2, 3, 12, 44, 45 | syl22anc 1229 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
A. wral 2807 E. wrex 2808 { crab 2811
C_ wss 3475 c0 3784 U. cuni 4249 class class class wbr 4452
{ copab 4509 cep 4794
con0 4883 suc csuc 4885 `' ccnv 5003
dom cdm 5004 Fn wfn 5588 --> wf 5589
` cfv 5593 (class class class)co 6296
csupp 6918 cfsupp 7849 OrdIso coi 7955 ccnf 8099 |
This theorem is referenced by: cantnflem1 8129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fsupp 7850 df-oi 7956 df-cnf 8100 |
Copyright terms: Public domain | W3C validator |