![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cantnflem1cOLD | Unicode version |
Description: Lemma for cantnfOLD 8155. (Contributed by Mario Carneiro,
4-Jun-2015.)
Obsolete version of cantnflem1a 8125 as of 2-Jul-2019. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
cantnfsOLD.1 | |
cantnfsOLD.2 | |
cantnfsOLD.3 | |
oemapvalOLD.t | |
oemapvalOLD.3 | |
oemapvalOLD.4 | |
oemapvalOLD.5 | |
oemapvalOLD.6 | |
cantnflem1OLD.o |
Ref | Expression |
---|---|
cantnflem1cOLD |
S
,,,,, ,,,,,, ,O
,,,, ,,,, ,,,,, , ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 755 | . 2 | |
2 | cantnfsOLD.1 | . . . . . . . 8 | |
3 | cantnfsOLD.2 | . . . . . . . 8 | |
4 | cantnfsOLD.3 | . . . . . . . 8 | |
5 | oemapvalOLD.t | . . . . . . . 8 | |
6 | oemapvalOLD.3 | . . . . . . . 8 | |
7 | oemapvalOLD.4 | . . . . . . . 8 | |
8 | oemapvalOLD.5 | . . . . . . . 8 | |
9 | oemapvalOLD.6 | . . . . . . . 8 | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | oemapvali 8124 | . . . . . . 7 |
11 | 10 | simp3d 1010 | . . . . . 6 |
12 | 11 | ad3antrrr 729 | . . . . 5 |
13 | cantnflem1OLD.o | . . . . . . . 8 | |
14 | 2, 3, 4, 5, 6, 7, 8, 9, 13 | cantnflem1bOLD 8149 | . . . . . . 7 |
15 | 14 | ad2antrr 725 | . . . . . 6 |
16 | simprr 757 | . . . . . 6 | |
17 | 10 | simp1d 1008 | . . . . . . . . 9 |
18 | onelon 4908 | . . . . . . . . 9 | |
19 | 4, 17, 18 | syl2anc 661 | . . . . . . . 8 |
20 | 19 | ad3antrrr 729 | . . . . . . 7 |
21 | onss 6626 | . . . . . . . . . . 11 | |
22 | 4, 21 | syl 16 | . . . . . . . . . 10 |
23 | 22 | sselda 3503 | . . . . . . . . 9 |
24 | 23 | adantlr 714 | . . . . . . . 8 |
25 | 24 | adantr 465 | . . . . . . 7 |
26 | ontr2 4930 | . . . . . . 7 | |
27 | 20, 25, 26 | syl2anc 661 | . . . . . 6 |
28 | 15, 16, 27 | mp2and 679 | . . . . 5 |
29 | eleq2 2530 | . . . . . . 7 | |
30 | fveq2 5871 | . . . . . . . 8 | |
31 | fveq2 5871 | . . . . . . . 8 | |
32 | 30, 31 | eqeq12d 2479 | . . . . . . 7 |
33 | 29, 32 | imbi12d 320 | . . . . . 6 |
34 | 33 | rspcv 3206 | . . . . 5 |
35 | 1, 12, 28, 34 | syl3c 61 | . . . 4 |
36 | simprl 756 | . . . 4 | |
37 | 35, 36 | eqnetrrd 2751 | . . 3 |
38 | fvex 5881 | . . . 4 | |
39 | dif1o 7169 | . . . 4 | |
40 | 38, 39 | mpbiran 918 | . . 3 |
41 | 37, 40 | sylibr 212 | . 2 |
42 | 2, 3, 4 | cantnfsOLD 8136 | . . . . . . 7 |
43 | 7, 42 | mpbid 210 | . . . . . 6 |
44 | 43 | simpld 459 | . . . . 5 |
45 | ffn 5736 | . . . . 5 | |
46 | 44, 45 | syl 16 | . . . 4 |
47 | 46 | ad3antrrr 729 | . . 3 |
48 | elpreima 6007 | . . 3 | |
49 | 47, 48 | syl 16 | . 2 |
50 | 1, 41, 49 | mpbir2and 922 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 E. wrex 2808
{ crab 2811 cvv 3109
\ cdif 3472 C_ wss 3475 c0 3784 U. cuni 4249 class class class wbr 4452
{ copab 4509 cep 4794
con0 4883 suc csuc 4885 `' ccnv 5003
dom cdm 5004 " cima 5007 Fn wfn 5588
--> wf 5589 ` cfv 5593 (class class class)co 6296
c1o 7142
cfn 7536 OrdIso coi 7955 ccnf 8099 |
This theorem is referenced by: cantnflem1OLD 8152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fsupp 7850 df-oi 7956 df-cnf 8100 |
Copyright terms: Public domain | W3C validator |