![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cantnflem4OLD | Unicode version |
Description: Lemma for cantnfOLD 8155. Complete the induction step of cantnflem3OLD 8153. (Contributed by Mario Carneiro, 25-May-2015.) Obsolete version of cantnflem4 8132 as of 2-Jul-2019. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
cantnfsOLD.1 | |
cantnfsOLD.2 | |
cantnfsOLD.3 | |
oemapvalOLD.t | |
cantnfOLD.1 | |
cantnfOLD.2 | |
cantnfOLD.3 | |
cantnfOLD.4 | |
cantnfOLD.5 | |
cantnfOLD.6 | |
cantnfOLD.7 |
Ref | Expression |
---|---|
cantnflem4OLD |
S
,,,, ,,, ,,, ,,,, ,,,,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfOLD.2 | . . . 4 | |
2 | cantnfsOLD.2 | . . . . . . . . 9 | |
3 | cantnfsOLD.1 | . . . . . . . . . . . . 13 | |
4 | cantnfsOLD.3 | . . . . . . . . . . . . 13 | |
5 | oemapvalOLD.t | . . . . . . . . . . . . 13 | |
6 | cantnfOLD.1 | . . . . . . . . . . . . 13 | |
7 | cantnfOLD.3 | . . . . . . . . . . . . 13 | |
8 | 3, 2, 4, 5, 6, 1, 7 | cantnflem2 8130 | . . . . . . . . . . . 12 |
9 | eqid 2457 | . . . . . . . . . . . . . 14 | |
10 | eqid 2457 | . . . . . . . . . . . . . 14 | |
11 | eqid 2457 | . . . . . . . . . . . . . 14 | |
12 | 9, 10, 11 | 3pm3.2i 1174 | . . . . . . . . . . . . 13 |
13 | cantnfOLD.4 | . . . . . . . . . . . . . 14 | |
14 | cantnfOLD.5 | . . . . . . . . . . . . . 14 | |
15 | cantnfOLD.6 | . . . . . . . . . . . . . 14 | |
16 | cantnfOLD.7 | . . . . . . . . . . . . . 14 | |
17 | 13, 14, 15, 16 | oeeui 7270 | . . . . . . . . . . . . 13 |
18 | 12, 17 | mpbiri 233 | . . . . . . . . . . . 12 |
19 | 8, 18 | syl 16 | . . . . . . . . . . 11 |
20 | 19 | simpld 459 | . . . . . . . . . 10 |
21 | 20 | simp1d 1008 | . . . . . . . . 9 |
22 | oecl 7206 | . . . . . . . . 9 | |
23 | 2, 21, 22 | syl2anc 661 | . . . . . . . 8 |
24 | 20 | simp2d 1009 | . . . . . . . . . 10 |
25 | 24 | eldifad 3487 | . . . . . . . . 9 |
26 | onelon 4908 | . . . . . . . . 9 | |
27 | 2, 25, 26 | syl2anc 661 | . . . . . . . 8 |
28 | omcl 7205 | . . . . . . . 8 | |
29 | 23, 27, 28 | syl2anc 661 | . . . . . . 7 |
30 | 20 | simp3d 1010 | . . . . . . . 8 |
31 | onelon 4908 | . . . . . . . 8 | |
32 | 23, 30, 31 | syl2anc 661 | . . . . . . 7 |
33 | oaword1 7220 | . . . . . . 7 | |
34 | 29, 32, 33 | syl2anc 661 | . . . . . 6 |
35 | dif1o 7169 | . . . . . . . . . . 11 | |
36 | 35 | simprbi 464 | . . . . . . . . . 10 |
37 | 24, 36 | syl 16 | . . . . . . . . 9 |
38 | on0eln0 4938 | . . . . . . . . . 10 | |
39 | 27, 38 | syl 16 | . . . . . . . . 9 |
40 | 37, 39 | mpbird 232 | . . . . . . . 8 |
41 | omword1 7241 | . . . . . . . 8 | |
42 | 23, 27, 40, 41 | syl21anc 1227 | . . . . . . 7 |
43 | 42, 30 | sseldd 3504 | . . . . . 6 |
44 | 34, 43 | sseldd 3504 | . . . . 5 |
45 | 19 | simprd 463 | . . . . 5 |
46 | 44, 45 | eleqtrd 2547 | . . . 4 |
47 | 1, 46 | sseldd 3504 | . . 3 |
48 | 3, 2, 4 | cantnff 8114 | . . . 4 |
49 | ffn 5736 | . . . 4 | |
50 | fvelrnb 5920 | . . . 4 | |
51 | 48, 49, 50 | 3syl 20 | . . 3 |
52 | 47, 51 | mpbid 210 | . 2 |
53 | 2 | adantr 465 | . . 3 |
54 | 4 | adantr 465 | . . 3 |
55 | 6 | adantr 465 | . . 3 |
56 | 1 | adantr 465 | . . 3 |
57 | 7 | adantr 465 | . . 3 |
58 | simprl 756 | . . 3 | |
59 | simprr 757 | . . 3 | |
60 | eqid 2457 | . . 3 | |
61 | 3, 53, 54, 5, 55, 56, 57, 13, 14, 15, 16, 58, 59, 60 | cantnflem3OLD 8153 | . 2 |
62 | 52, 61 | rexlimddv 2953 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 A. wral 2807
E. wrex 2808 { crab 2811 \ cdif 3472
C_ wss 3475 c0 3784 if cif 3941 <. cop 4035
U. cuni 4249 |^| cint 4286 { copab 4509 e. cmpt 4510
con0 4883 dom cdm 5004 ran crn 5005
iota cio 5554 Fn wfn 5588 --> wf 5589
` cfv 5593 (class class class)co 6296
c1st 6798
c2nd 6799
c1o 7142
c2o 7143
coa 7146
comu 7147
coe 7148
ccnf 8099 |
This theorem is referenced by: cantnfOLD 8155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-2o 7150 df-oadd 7153 df-omul 7154 df-oexp 7155 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fsupp 7850 df-oi 7956 df-cnf 8100 |
Copyright terms: Public domain | W3C validator |