![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cantnfp1lem1OLD | Unicode version |
Description: Lemma for cantnfp1OLD 8147. (Contributed by Mario Carneiro, 20-Jun-2015.) Obsolete version of cantnfp1lem1 8118 as of 30-Jun-2019. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
cantnfsOLD.1 | |
cantnfsOLD.2 | |
cantnfsOLD.3 | |
cantnfp1OLD.4 | |
cantnfp1OLD.5 | |
cantnfp1OLD.6 | |
cantnfp1OLD.7 | |
cantnfp1OLD.f |
Ref | Expression |
---|---|
cantnfp1lem1OLD |
S
, , , ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfp1OLD.6 | . . . . 5 | |
2 | 1 | adantr 465 | . . . 4 |
3 | cantnfp1OLD.4 | . . . . . . 7 | |
4 | cantnfsOLD.1 | . . . . . . . 8 | |
5 | cantnfsOLD.2 | . . . . . . . 8 | |
6 | cantnfsOLD.3 | . . . . . . . 8 | |
7 | 4, 5, 6 | cantnfsOLD 8136 | . . . . . . 7 |
8 | 3, 7 | mpbid 210 | . . . . . 6 |
9 | 8 | simpld 459 | . . . . 5 |
10 | 9 | ffvelrnda 6031 | . . . 4 |
11 | ifcl 3983 | . . . 4 | |
12 | 2, 10, 11 | syl2anc 661 | . . 3 |
13 | cantnfp1OLD.f | . . 3 | |
14 | 12, 13 | fmptd 6055 | . 2 |
15 | 8 | simprd 463 | . . . 4 |
16 | snfi 7616 | . . . 4 | |
17 | unfi 7807 | . . . 4 | |
18 | 15, 16, 17 | sylancl 662 | . . 3 |
19 | df1o2 7161 | . . . . . 6 | |
20 | 19 | difeq2i 3618 | . . . . 5 |
21 | 20 | imaeq2i 5340 | . . . 4 |
22 | eldifi 3625 | . . . . . . . 8 | |
23 | 22 | adantl 466 | . . . . . . 7 |
24 | 1 | adantr 465 | . . . . . . . 8 |
25 | fvex 5881 | . . . . . . . 8 | |
26 | ifexg 4011 | . . . . . . . 8 | |
27 | 24, 25, 26 | sylancl 662 | . . . . . . 7 |
28 | eqeq1 2461 | . . . . . . . . 9 | |
29 | fveq2 5871 | . . . . . . . . 9 | |
30 | 28, 29 | ifbieq2d 3966 | . . . . . . . 8 |
31 | 30, 13 | fvmptg 5954 | . . . . . . 7 |
32 | 23, 27, 31 | syl2anc 661 | . . . . . 6 |
33 | eldifn 3626 | . . . . . . . . 9 | |
34 | 33 | adantl 466 | . . . . . . . 8 |
35 | elsn 4043 | . . . . . . . . 9 | |
36 | elun2 3671 | . . . . . . . . 9 | |
37 | 35, 36 | sylbir 213 | . . . . . . . 8 |
38 | 34, 37 | nsyl 121 | . . . . . . 7 |
39 | iffalse 3950 | . . . . . . 7 | |
40 | 38, 39 | syl 16 | . . . . . 6 |
41 | ssun1 3666 | . . . . . . . . 9 | |
42 | sscon 3637 | . . . . . . . . 9 | |
43 | 41, 42 | ax-mp 5 | . . . . . . . 8 |
44 | 43 | sseli 3499 | . . . . . . 7 |
45 | 20 | imaeq2i 5340 | . . . . . . . . 9 |
46 | eqimss2 3556 | . . . . . . . . 9 | |
47 | 45, 46 | mp1i 12 | . . . . . . . 8 |
48 | 9, 47 | suppssrOLD 6021 | . . . . . . 7 |
49 | 44, 48 | sylan2 474 | . . . . . 6 |
50 | 32, 40, 49 | 3eqtrd 2502 | . . . . 5 |
51 | 14, 50 | suppssOLD 6020 | . . . 4 |
52 | 21, 51 | syl5eqss 3547 | . . 3 |
53 | ssfi 7760 | . . 3 | |
54 | 18, 52, 53 | syl2anc 661 | . 2 |
55 | 4, 5, 6 | cantnfsOLD 8136 | . 2 |
56 | 14, 54, 55 | mpbir2and 922 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
cvv 3109
\ cdif 3472 u. cun 3473 C_ wss 3475
c0 3784 if cif 3941 { csn 4029
e. cmpt 4510 con0 4883 `' ccnv 5003 dom cdm 5004
" cima 5007 --> wf 5589 ` cfv 5593
(class class class)co 6296 c1o 7142
cfn 7536 ccnf 8099 |
This theorem is referenced by: cantnfp1lem2OLD 8145 cantnfp1lem3OLD 8146 cantnfp1OLD 8147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-oadd 7153 df-er 7330 df-map 7441 df-en 7537 df-fin 7540 df-fsupp 7850 df-oi 7956 df-cnf 8100 |
Copyright terms: Public domain | W3C validator |